X-ray powder diffraction data for Al73.5Ni18.5Re8 orthorhombic phase

2008 ◽  
Vol 23 (3) ◽  
pp. 251-254 ◽  
Author(s):  
B. Grushko ◽  
S. Balanetskyy

A ternary phase was revealed in Al-Ni-Re in a small compositional range around Al73.5Ni18.5Re8. Using powder X-ray diffraction and electron diffraction, it was found to have an orthorhombic structure with a=10.048(3) Å, b=15.423(8) Å, and c=8.367(3) Å.

2015 ◽  
Vol 30 (3) ◽  
pp. 294-295 ◽  
Author(s):  
G. Murugesan ◽  
R. Nithya ◽  
S. Kalainathan

Single crystals of Ca0.9Nd0.1Ti0.9Al0.1O3 (CNTAO) were grown using optical floating zone technique and the grown crystals were characterized by Laue diffraction and powder X-ray diffraction techniques for crystal quality and its composition, respectively. The powder pattern of CNTAO was indexed and refined using GSAS program to an orthorhombic structure with space group Pbnm (#62), a = 5.3832(1), b = 5.4343(1), c = 7.6389(2) Å, V = 223.4677 Å3′, and Z = 4.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


2015 ◽  
Vol 30 (3) ◽  
pp. 293-293 ◽  
Author(s):  
Qing Wang ◽  
Ying Xiao ◽  
Jia Wei He ◽  
Hui Li

X-ray powder diffraction data for 3,3-dichloro-1-(4-nitrophenyl)-2-piperidinone, C11H10Cl2N2O3, are reported [a = 11.088(4) Å, b = 11.594(5) Å, c = 12.689(3) Å, α = 118.456(1)°, β = 100.320(3)°, γ = 107.763(3)°, V = 1259.27 Å3, Z = 4 and space group P-1 ]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


1997 ◽  
Vol 53 (6) ◽  
pp. 861-869 ◽  
Author(s):  
C. D. Ling ◽  
J. G. Thompson ◽  
S. Schmid ◽  
D. J. Cookson ◽  
R. L. Withers

The structures of the layered intergrowth phases SbIIISb^{\rm V}_xAl-xTiO6 (x \simeq 0, A = Ta, Nb) have been refined by the Rietveld method, using X-ray diffraction data obtained using a synchrotron source. The starting models for these structures were derived from those of Sb^{\rm III}_3Sb^{\rm V}_xA 3−xTiO14 (x = 1.26, A = Ta and x = 0.89, A = Nb), previously solved by single-crystal X-ray diffraction. There were no significant differences between the derived models and the final structures, validating the approach used to obtain the models and confirming that the n = 1 and n = 3 members of the family, Sb^{\rm III}_nSb^{\rm V}_xA n−xTiO4n+2 are part of a structurally homologous series.


2008 ◽  
Vol 23 (4) ◽  
pp. 356-359 ◽  
Author(s):  
B. Grushko ◽  
D. Pavlyuchkov

Ternary Al–Cu–Ir phases, isostructural to the Al–Cu–Rh ω and C2 phases, were found to be around the Al70Cu20Ir10 and Al60Cu15Ir25 compositions, respectively. Using powder X-ray diffraction, the former was found to have a tetragonal structure (space group P4/mnc) with a=6.4142(9) Å and c=14.842(4) Å, and the latter has a cubic structure (space group Fm3) with a=15.3928(6) Å.


2010 ◽  
Vol 163 ◽  
pp. 173-176
Author(s):  
Lucjan Pająk ◽  
E. Olszewska ◽  
Stanislaw Pikus ◽  
Grzegorz Dercz ◽  
Józef Rasek

In the present work X-ray studies were performed on annealed Fe78Nb2B20 amorphous alloy prepared by melt-spinning technique. All the samples were annealed in vacuum for 1 hour at temperatures up to 800°C. For the studied alloy -Fe and Fe2B are the stable, crystalline phases. The -Fe crystallized as the first crystalline phase in the sample annealed at 350°C. On the other hand, metastable Fe3B phase appeared to be stable during annealing in 425-800°C temperature range. The best fitting of the experimental X-ray data to as jet available ICDD files was obtained for Ni3P type structure (39-1315 – S.G.: I (82)). New, experimental powder diffraction data for metastable Fe3B phase prepared according to ICDD standards were elaborated for the sample annealed at 600°C. For this sample the best agreement between the calculated values of lattice constants and positions of experimental diffraction lines was obtained. The X-ray data were collected using X-Pert Philips diffractometer equipped with curved graphite monochromator on diffracted beam. The Treor program was applied for the analysis of X-ray diffraction data.


1996 ◽  
Vol 11 (1) ◽  
pp. 7-8 ◽  
Author(s):  
Hee-Lack Choi ◽  
Nobuo Ishizawa ◽  
Naoya Enomoto ◽  
Zenbe-e Nakagawa

X-ray powder-diffraction data for Pb2(C2O4)(NO3)2·2H2O were obtained. The crystal system was determined to be monoclinic. The unit-cell parameters were refined to a=10.613(2) Å, b=7.947(2) Å, c=6.189(1) Å, and β=104.48(2)°.


1983 ◽  
Vol 27 ◽  
pp. 21-26
Author(s):  
Raymond P. Goehner ◽  
Mary F. Garbauskas

AbstractThis paper describes the procedures used to retrieve JCPDS powder diffraction data by certain characteristics. These characteristics may include chemistry, mineral name, highest intensity dspacing, largest dspacing, PDF number, etc. The storage scheme used for the powder data and the procedures used to enhance the retrieval speed are described.


2003 ◽  
Vol 18 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Else Breval ◽  
Nichole Wonderling ◽  
Joseph P. Dougherty

PLZT of the compositions 0≤L≤12, and 0≤T≤10 was studied in order to describe the structure of the phases as a function of composition. This range contains a mixed region with PLZT+La2Zr2O7, an orthorhombic, a rhombohedral (hexagonal) phase, a tetragonal phase, and a mixture of different PLZT phases. Each phase pure composition is described by X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document