Instantaneous Display of X-Ray Diffraction using a Diode Array Camera Tube

1968 ◽  
Vol 12 ◽  
pp. 165-173 ◽  
Author(s):  
Arthur N. Chester ◽  
Fred B. Koch

AbstractThe silicon diode array camera tube, recently developed for PICTURFPHONE® service, was modified to permit X-ray imaging. High quantum efficiency is attained without the use of a phosphor screen, since each photon absorbed in the silicon target generates several hundred hole-electron pairs for each keV of its energy, most of which can he usefully collected. The sensitivity and resolution are adequate to allow a continuous television display of the diffracted intensity as a crystal is oriented. Particular advantages of this technique include; high resolution (< 25 μm); electronically variable magnification; direct oscilloscope measurement of X-ray spot Intensity profiles and relative spot intensities because signal current is directly proportional to photon flux; high sensitivity in the range of 0.6 to 5.0 Å, potentially limited only "by counting statistics; integration times variable from < 1/60 second to minutes; and expected low cost, since the camera tube has no complicated electron imaging, and is directly interchangeable Mith a standard television vidicon. Applications which are described include crystal orientation and X-ray topography.

1969 ◽  
Vol 48 (2) ◽  
pp. 345-382 ◽  
Author(s):  
Arthur N. Chester ◽  
Thomas C. Loomis ◽  
M. M. Weiss
Keyword(s):  
X Ray ◽  

1977 ◽  
Vol 16 (1) ◽  
pp. 94 ◽  
Author(s):  
Jay S. Pearlman ◽  
Robert F. Benjamin
Keyword(s):  
Low Cost ◽  
X Ray ◽  

2021 ◽  
Vol 4 (9) ◽  
pp. 681-688
Author(s):  
Sarah Deumel ◽  
Albert van Breemen ◽  
Gerwin Gelinck ◽  
Bart Peeters ◽  
Joris Maas ◽  
...  

AbstractTo realize the potential of artificial intelligence in medical imaging, improvements in imaging capabilities are required, as well as advances in computing power and algorithms. Hybrid inorganic–organic metal halide perovskites, such as methylammonium lead triiodide (MAPbI3), offer strong X-ray absorption, high carrier mobilities (µ) and long carrier lifetimes (τ), and they are promising materials for use in X-ray imaging. However, their incorporation into pixelated sensing arrays remains challenging. Here we show that X-ray flat-panel detector arrays based on microcrystalline MAPbI3 can be created using a two-step manufacturing process. Our approach is based on the mechanical soft sintering of a freestanding absorber layer and the subsequent integration of this layer on a pixelated backplane. Freestanding microcrystalline MAPbI3 wafers exhibit a sensitivity of 9,300 µC Gyair–1 cm–2 with a μτ product of 4 × 10–4 cm2 V–1, and the resulting X-ray imaging detector, which has 508 pixels per inch, combines a high spatial resolution of 6 line pairs per millimetre with a low detection limit of 0.22 nGyair per frame.


2021 ◽  
Author(s):  
James Day

To further develop a MV x-ray portal imaging device with high detection efficiency and adequate spatial resolution for image guided radiation therapy, the experimental results for a prototype detector were matched using Monte-Carlo software to then improve upon the design. The simulation and experiment were carried out using a 6 MV beam from a linear accelerator machine. An adequate match was obtained with the spatial resolution matching up to a MTF value of 0.2 and then diverging and the total signal registered in the central fiber was matched for field sizes ranging from 3 cm by 3 cm to 20 cm by 20 cm for 5 cm, 15 cm and 25 cm air gaps within 3%. The design was altered from a hexagonal array of round double cladded fibers to a square array of single cladded square fibers. The spatial resolution was improved from 0.242 lp mm-1 to 0.359 lp mm-1 at an MTF value of 0.5 from the original design to a square array of square fibers 0.5 mm wide separated by 0.25 mm of lead foil. With further optimization of the detector design it may be possible to increase spatial resolution for MV x-ray imaging while maintaining an adequate detection efficiency.


2014 ◽  
Vol 21 (4) ◽  
pp. 815-818 ◽  
Author(s):  
A. Rack ◽  
M. Scheel ◽  
L. Hardy ◽  
C. Curfs ◽  
A. Bonnin ◽  
...  

First real-time studies of ultra-fast processes by single-bunch imaging at the European Synchrotron Radiation Facility are reported. By operating the storage ring of the ESRF in single-bunch mode with its correspondingly increased electron bunch charge density per singlet, the polychromatic photon flux density at insertion-device beamlines is sufficient to capture hard X-ray images exploiting the light from a single bunch (the corresponding bunch length is 140 ps FWHM). Hard X-ray imaging with absorption contrast as well as phase contrast in combination with large propagation distances is demonstrated using spatial samplings of 11 µm and 35 µm pixel size. The images acquired allow one to track crack propagation in a bursting piece of glass, breaking of an electrical fuse as well as cell wall rupture in an aqueous foam. Future developments and their potential in the frame of the proposed Phase II of the ESRF Upgrade Program are discussed.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangeun Cho ◽  
Sungwoo Kim ◽  
Jongmin Kim ◽  
Yongcheol Jo ◽  
Ilhwan Ryu ◽  
...  

Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.


Computed tomography is a method for obtaining a series of radiographic pictures of contiguous slices through a solid object such as the human body. Each picture is computed from a set of X-ray transmission measurements and represents the distribution of X-ray attenuation in the slice. The high sensitivity of the method to changes in both density and atomic number has resulted in the development of new diagnostic methods in medicine. The limitations of the method are discussed in terms of two particular kinds of application. First, those applications in which a very precise determination of density or atomic number is required, but at low spatial resolution; an example would be the determination of the uniformity of mixture of plastics or metals. The second kind of application is that requiring high spatial resolution as in the detection of cracks and the visualization of internal structures in complicated objects.


1993 ◽  
Vol 32 (Part 1, No. 5A) ◽  
pp. 2142-2146 ◽  
Author(s):  
Fumio Sato ◽  
Hirotaka Maruyama ◽  
Katsuyuki Goto ◽  
Isao Fujimoto ◽  
Keiichi Shidara ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document