X-ray Residual Stress Measurements Using Parallel Beam Optics

1976 ◽  
Vol 20 ◽  
pp. 393-402 ◽  
Author(s):  
Richard M. Chrenko

X-ray residual stress measurements have been made with a commercial portable X-ray diffraction apparatus that uses parallel beam optics and that was specifically designed for residual stress measurements. This machine differs from X-ray diffraction units using the usual parafocusing geometry in several respects, most notably reduced sample placement errors and larger sample sizes that can be accommodated. Two special modes of operation are available and will be discussed. These are the ability to use the side inclining method for stress analysis and the ability to use an oscillating ψ motion, the latter mode being useful for examining large grain size materials.

2013 ◽  
Vol 768-769 ◽  
pp. 723-732 ◽  
Author(s):  
Jürgen Gegner ◽  
Wolfgang Nierlich

Rolling bearings in wind turbine gearboxes occasionally fail prematurely by so-called white etching cracks. The appearance of the damage indicates brittle spontaneous tensile stress induced surface cracking followed by corrosion fatigue driven crack growth. An X-ray diffraction based residual stress analysis reveals vibrations in service as the root cause. The occurrence of high local friction coefficients in the rolling contact is described by a tribological model. Depth profiles of the equivalent shear and normal stresses are compared with residual stress patterns and a relevant fracture strength, respectively. White etching crack failures are reproduced on a rolling contact fatigue test rig under increased mixed friction. Causative vibration loading is evident from residual stress measurements. Cold working compressive residual stresses are an effective countermeasure.


1973 ◽  
Vol 17 ◽  
pp. 354-370 ◽  
Author(s):  
Chester F. Jatczak ◽  
Harald H. Boehm

AbstractThe effects of various combinations of divergence, receiving and Soller slits on x-ray measurements were investigated for Siemens-Halske and General Electric diffractometers. Influences of the following factors which also affect accuracy and precision of x-ray R.S. results were determined in addition: (a) parafocus versus stationary detector focusing geometry, (b) method of peak location, (c) LPA intensity correction, (d) diffractometer electronic stability and (e) elastic constants.The optimum choiees of beam optics and factors (a-e) were defined with regard to aecuraey, precision and minimurn time for stress deterniination, on sharp and broad line speeimens of soft (annealed) and hardened steel and of annealed Cr-powder.


1968 ◽  
Vol 12 ◽  
pp. 269-300 ◽  
Author(s):  
A. L. Esquivel

AbstractUniaxial Plastic Deformation (UPD) has been known to produce anomalies in residual stress measurements based on x-ray diffraction techniques. This study was undertaken to determine the magnitude of the effects, if any, on residual stress calculations from various materials subjected to UPD. An x-ray diffraction study using the two-exposure method ( ψ = 0° and ψ = U5°) was made on several iron, aluminum, and titanium alloys (AISI 4340, 4330M, 4130; 2024-13, 7075-T611; Ti-6Al-4V) before and after these alloys were deformed plastically by bending on a U-bend test fixture. The x-ray peak shifts, Δ2θ0-ψ, were recorded and the x-ray stress factors, Ki, calculated by three different methods. The results indicate that UPD of the calibration specimens will increase or decrease Ki depending on the alloy. These results are discussed together with observations on the additivity of residual and applied stresses, and the per cent differences in the stress measurements based on stress factors calculated by three different methods.


2008 ◽  
Vol 23 (2) ◽  
pp. 182-182
Author(s):  
R. Machado ◽  
A. Kuznetsov ◽  
C. A. Achete ◽  
T. Hirsch

2002 ◽  
Vol 17 (2) ◽  
pp. 81-93 ◽  
Author(s):  
Licai Jiang ◽  
Zaid Al-Mosheky ◽  
Nick Grupido

Multilayer optics is one of the widely applied optics for conditioning an X-ray beam in the region of X-ray diffraction. Multilayer optics offers a well-balanced performance. The beam conditioned by a multilayer optic is characterized by low divergence, good spectrum purity, and high intensity. This article will start with a short historical note of the development of X-ray multilayer and a summary on the basic performance characteristics of X-ray multilayer, then move on to the discussion on the design principle of one- and two-dimensional optics. Both parallel beam optics and focusing optics will be addressed. As examples, selected applications of multilayer optics are also briefly discussed. Finally, the main problems associated with the application of multilayer optics are identified and the future developments are discussed.


Sign in / Sign up

Export Citation Format

Share Document