Basic principle and performance characteristics of multilayer beam conditioning optics

2002 ◽  
Vol 17 (2) ◽  
pp. 81-93 ◽  
Author(s):  
Licai Jiang ◽  
Zaid Al-Mosheky ◽  
Nick Grupido

Multilayer optics is one of the widely applied optics for conditioning an X-ray beam in the region of X-ray diffraction. Multilayer optics offers a well-balanced performance. The beam conditioned by a multilayer optic is characterized by low divergence, good spectrum purity, and high intensity. This article will start with a short historical note of the development of X-ray multilayer and a summary on the basic performance characteristics of X-ray multilayer, then move on to the discussion on the design principle of one- and two-dimensional optics. Both parallel beam optics and focusing optics will be addressed. As examples, selected applications of multilayer optics are also briefly discussed. Finally, the main problems associated with the application of multilayer optics are identified and the future developments are discussed.

1976 ◽  
Vol 20 ◽  
pp. 393-402 ◽  
Author(s):  
Richard M. Chrenko

X-ray residual stress measurements have been made with a commercial portable X-ray diffraction apparatus that uses parallel beam optics and that was specifically designed for residual stress measurements. This machine differs from X-ray diffraction units using the usual parafocusing geometry in several respects, most notably reduced sample placement errors and larger sample sizes that can be accommodated. Two special modes of operation are available and will be discussed. These are the ability to use the side inclining method for stress analysis and the ability to use an oscillating ψ motion, the latter mode being useful for examining large grain size materials.


1992 ◽  
Vol 36 ◽  
pp. 373-377
Author(s):  
Mary F. Garbauskas ◽  
Donald G. LeGrand ◽  
Raymond P. Goehner

AbstractThe physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part. Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution, This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low grazing incidence to centimeters for transmission diffraction patterns, Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam optics to depth profile low atomic number materials. The specific application of this technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.


2014 ◽  
Vol 996 ◽  
pp. 141-146
Author(s):  
Nicholas Norberg ◽  
Arnold C. Vermeulen

Collecting reliable data is crucial in the research of residual stresses in thin films using X-ray diffraction. The parallel beam geometry has advantage of reliability compared to focusing beam geometry. Though care must be taken to the alignment. A small alignment error may cause a significant error in the stress value. We will show the sensitivity for the misalignment of the parallel beam optics, discuss requirements on hardware alignment and demonstrate a software correction for the presence of remaining hardware errors.


2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


2020 ◽  
Vol 35 (S1) ◽  
pp. S29-S33
Author(s):  
Dieter Ingerle ◽  
Werner Artner ◽  
Klaudia Hradil ◽  
Christina Streli

A commercial Empyrean X-ray diffractometer was adapted for combined grazing incidence X-ray fluorescence analysis (GIXRF) measurements with X-ray reflectivity (XRR) measurements. An energy-dispersive silicon drift detector was mounted and integrated in the angle-dependent data acquisition of the Empyrean. Different monochromator/X-ray optics units have been compared with the values obtained by the Atominstitut GIXRF + XRR spectrometer. Data evaluation was performed by JGIXA, a special software for combined GIXRF + XRR data fitting, developed at Atominstitut. A sample consisting of a ~50 nm nickel layer on a silicon substrate was used to compare the performance criteria (i.e. divergence and intensity) of the incident beam optics. An Empyrean X-ray diffractometer was successfully refitted to measure both GIXRF and XRR data.


2019 ◽  
Vol 8 (3) ◽  
pp. 388-399 ◽  
Author(s):  
Jiwoong Kang ◽  
Ning Lu ◽  
Issac Loo ◽  
Nancy Senabulya ◽  
Ashwin J. Shahani

Abstract Direct imaging of three-dimensional microstructure via X-ray diffraction-based techniques gives valuable insight into the crystallographic features that influence materials properties and performance. For instance, X-ray diffraction tomography provides information on grain orientation, position, size, and shape in a bulk specimen. As such techniques become more accessible to researchers, demands are placed on processing the datasets that are inherently “noisy,” multi-dimensional, and multimodal. To fulfill this need, we have developed a one-of-a-kind function package, PolyProc, that is compatible with a range of data shapes, from planar sections to time-evolving and three-dimensional orientation data. Our package comprises functions to import, filter, analyze, and visualize the reconstructed grain maps. To accelerate the computations in our pipeline, we harness computationally efficient approaches: for instance, data alignment is done via genetic optimization; grain tracking through the Hungarian method; and feature-to-feature correlation through k-nearest neighbors algorithm. As a proof-of-concept, we test our approach in characterizing the grain texture, topology, and evolution in a polycrystalline Al–Cu alloy undergoing coarsening.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 90 ◽  
Author(s):  
Wangsheng Chen ◽  
Fali Hu ◽  
Linbo Qin ◽  
Jun Han ◽  
Bo Zhao ◽  
...  

A sulfated sintered ore catalyst (SSOC) was prepared to improve the denitration performance of the sintered ore catalyst (SOC). The catalysts were characterized by X-ray Fluorescence Spectrometry (XRF), Brunauer–Emmett–Teller (BET) analyzer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared spectroscopy (DRIFTS) to understand the NH3-selective catalytic reduction (SCR) reaction mechanism. Moreover, the denitration performance and stability of SSOC were also investigated. The experimental results indicated that there were more Brønsted acid sites at the surface of SSOC after the treatment by sulfuric acid, which lead to the enhancement of the adsorption capacity of NH3 and NO. Meanwhile, Lewis acid sites were also observed at the SSOC surface. The reaction between −NH2, NH 4 + and NO (E-R mechanism) and the reaction of the coordinated ammonia with the adsorbed NO2 (L-H mechanism) were attributed to NOx reduction. The maximum denitration efficiency over the SSOC, which was about 92%, occurred at 300 °C, with a 1.0 NH3/NO ratio, and 5000 h−1 gas hourly space velocity (GHSV).


1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


2011 ◽  
Vol 675-677 ◽  
pp. 1025-1029
Author(s):  
Hui Zhang ◽  
Xiao Meng Lü ◽  
Jian Lin Ding ◽  
Ji Min Xie ◽  
Chang Hao Yan

Using Y2O3, Mn(CH3COO)2·4H2O as raw materials and glacial acetic acid as solvents, YMnxFe1-xO3 precursors (x= 0, 0.05, 0.1, 0.3, 0.5) have been prepared under 80°C water bath conditions. Perovskite YMnxFe1-xO3 samples were achieved after calcination over 900 °C for 4 h. Structure of the samples was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Ultraviolet obvious diffuse reflection(UV-vis DRS), and Field-emission scanning electron microscopy (FESEM). Photocatalytic activity of the samples was also investigated. Results showed that all the samples with stable perovskite structure had high light absorption in visible-light region, suggesting good visible light harvesting. SEM image showed that the samples were sponge-like and porous agglomerates. Photodecoloration activity of 100 mL Rhodamine B (10 mg/L) was 16~56 % under illumination for 150 min. Oxygen vacancies of the perovskite may explain the high activity of x = 0.1 sample.


Sign in / Sign up

Export Citation Format

Share Document