Quantitative Analysis of 300 and 400 Series Stainless Steel by Energy Dispersive X-Ray Fluorescence

1978 ◽  
Vol 22 ◽  
pp. 395-400
Author(s):  
Bradner D. Wheeler ◽  
Nancy Jacobus

Recent developments in analytical techniques and software have allowed the accurate quantitative determinations of both the major and minor elements in stainless steels by energy dispersive x-ray fluorescence. The successful analysis of 300 and 400 series stainless steel is reported utilizing this technique. The analysis of this type of material represents one of the most severe tests of the method due to numerous peak overlaps and interelement effects such as absorption and enhancement.Sixteen standards of ASTM 300 series and ten 400 series were prepared by polishing on a 220 grit aluminum oxide belt and subsequently washing the surface in absolute methanol. Analyses were performed with an EG&G ORTEC 6110 Tube Excited Fluorescence Analyzer utilizing a dual anode (Rh/W) x-ray tube. Peak deconvolutions and interelement corrections were made with a 16K PDP-11/05 computer utilizing the program FLINT (1). Utilization of spectral deconvolutions and interelement corrections yields a relative accuracy of approximately IX of the concentrations of the major elements.

Author(s):  
Ali Abboud ◽  
Ali AlHassan ◽  
Benjamin Dönges ◽  
Jean Sebastian Micha ◽  
Robert Hartmann ◽  
...  

2009 ◽  
Vol 19 (03n04) ◽  
pp. 167-173 ◽  
Author(s):  
B. B. TRIPATHY ◽  
T. R. RAUTRAY ◽  
SATYA R. DAS ◽  
MANAS R. DAS ◽  
V. VIJAYAN

The analysis of some of the Indian silver coins during British rule were analysed by Energy Dispersive X-Ray Fluorescence Technique. Eight elements namely Cr , Fe , Ni , Cu , Zn , As , Ag and Pb were estimated in this study which also seems to indicate the fragmentation as well as the impoverishment of the power for the regimes that had produced the studied coins. While Cu and Ag were present as major elements, other elements were found to be present in minor concentration.


2013 ◽  
Vol 53 (1) ◽  
pp. 165-169 ◽  
Author(s):  
Kentaro Kajiwara ◽  
Masugu Sato ◽  
Tamotsu Hashimoto ◽  
Takuyo Yamada ◽  
Takumi Terachi ◽  
...  

1979 ◽  
Vol 23 ◽  
pp. 163-176
Author(s):  
D. C. Camp ◽  
W. D. Ruhter

In the event that nuclear fuel from light water reactors (LWR) is reprocessed to reclaim the uranium or plutonium, several analytical techniques will be used for product accountability. Generally, the isotopic content of both the plutonium and uranium in the reprocessed product will have to be accurately determined. One plan for the reprocessing of LWR spent fuel incorporates the following scheme. After separation from both the fission products and transplutonium actinides (including neptunium and americium), part of the uranium and all of the plutonium in a nitrate solution will merge together to form a coprocessed stream. This solution will be concentrated by evaporation and sent to a hold tank for accountability. Input concentrations into the hold tank could be up to 350 g U/ℓ and nearly 50 g Pu/ℓ. The variation to be expected in these concentrations is not known. The remaining uranium fraction will be further purified and sent to a separate storage tank. Its expected stream concentration will be about 60 g U/ℓ. These two relatively high actinide stream concentrations can be monitored rapidly, quantitatively, and nondestructively using the technique of energy-dispersive x-ray fluorescence analysis(XRFA).


1978 ◽  
Vol 5 (5) ◽  
pp. 631 ◽  
Author(s):  
MS Buttrose

The storage protein bodies of plant seeds usually contain globoid crystals with a high content of phytin, a rich store of Mg, P, K and Ca. By energy dispersive X-ray analysis, Mn and Fe have now been located in the globoid crystals of protein bodies in the seed embryos of Avena sativa and Casuarina species. Their levels in sections of globoids, relative to the levels of the major elements present, is consistent with their relative levels stored in whole seeds of various species as determined by chemical analysis.


1970 ◽  
Vol 24 (6) ◽  
pp. 557-566 ◽  
Author(s):  
R. S. Frankel ◽  
D. W. Aitken

A review is given of recent developments in energy-dispersive x-ray emission spectroscopy, with the aim of providing both an introductory and usefully practical look at this innovative field. The review begins with the first principles of x-ray production and observation, including a brief comparison of the performance capabilities of different types of detectors, but then specializes to a major extent in solid state x-ray spectrometers, which have led to the most significant new developments and applications. Evidence is presented which suggests that we are nearing an asymptotic limit in the attainment of ever better resolution with these types of systems. Applications that have been made possible by significant improvements in system resolution are discussed, but in the context of the need for a realistic appraisal of over-all system requirements. The great advantages offered by the marriage of silicon x-ray spectrometers to scanning electron microscopes and electron microprobe analyzers are reviewed and illustrated.


1965 ◽  
Vol 9 ◽  
pp. 487-503
Author(s):  
A. K. Baird ◽  
D. H. Zenger

AbstractThe major elements m common rocks are of low atomic number, but analyses of high precision are possible by soft X-ray spectrography if several grams of rock sample are available. The electron-probe microanalyzer is shown to complement this established method by permitting analyses of particles as small as 1 μ in diameter. This paper describes applications of these methods to the analysis of the major and minor elements of silicate, carbonate, and phosphate minerals and rocks.Elements of particular interest are as follows : carbon in particles enclosed in carbonate rocks; oxygen, as the major constituent of the specimens; phosphorus in phosphatic nodules and apatites; manganese and iron, as colorations in fossil shells; and the group oxygen, sodium, magnesium, aluminum, silicon, potassium, calcium, and iron as complex segregations and zonations within single crystals of several mineral phases.If the bulk composition of a rock is known, and also the chemistry of the constituent minerals, it is possible to compute quantitative minéralogie analyses of high precision. Thus, the combined use of soft X-ray spectrography and electronprobe microanalysis can provide quantitative chemical and mineralogicat information on the earth's crust on all scales from thousands of square miles (by means of appropriate sampling) down to the scale of 1 μ.


Sign in / Sign up

Export Citation Format

Share Document