Manganese and Iron in Globoid Crystals of Protein Bodies From Avena and Casuarina

1978 ◽  
Vol 5 (5) ◽  
pp. 631 ◽  
Author(s):  
MS Buttrose

The storage protein bodies of plant seeds usually contain globoid crystals with a high content of phytin, a rich store of Mg, P, K and Ca. By energy dispersive X-ray analysis, Mn and Fe have now been located in the globoid crystals of protein bodies in the seed embryos of Avena sativa and Casuarina species. Their levels in sections of globoids, relative to the levels of the major elements present, is consistent with their relative levels stored in whole seeds of various species as determined by chemical analysis.


1978 ◽  
Vol 56 (17) ◽  
pp. 2050-2061 ◽  
Author(s):  
John N. A. Lott ◽  
Mark S. Buttrose

Protein bodies from almond (Prunus dulcis), Brazil nut (Bertholletia excelsa), and quandong (Santalum acuminatum) have been studied in thin sections of fixed and embedded tissue, in freeze-fracture replicas of unfixed tissue, by chemical analysis of tissue for P, K, Mg, and Ca, and by energy dispersive x-ray (EDX) analysis of both sections of glutaraldehyde-fixed tissue and freeze-dried tissue powders. The protein bodies in all three species contained globoid crystals, protein crystalloids, and proteinaceous matrix regions. Results of EDX analyses were consistent with globoid crystals being rich in phytin. Variation in both the structure and the elemental composition of globoids was common. In almond some globoids were lobed rather than spherical, and large globoid crystals often contained considerable calcium whereas small globoid crystals contained little if any calcium. The globoid crystals of Brazil nut often contained barium in addition to P, K, Ca, and Mg. Protein crystalloids of Brazil nut were compound crystals. Protein bodies of quandong seed, which is largely endosperm rather than embryo, were unexceptional.



1980 ◽  
Vol 58 (6) ◽  
pp. 699-711 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

Protein bodies of dry seeds of tomato (Lycopersicon esculentum) from radicle, hypocotyl, cotyledon, and endosperm tissue were extensively studied using thin-sectioning, freeze-fracturing and energy dispersive x-ray (EDX) analysis. Protein bodies varied in size, were oval to circular in section, and generally consisted of a proteinaceous matrix, globoid crystal, and protein crystalloid components. Size, shape, and arrangements of globoid crystals and protein crystalloids varied even within the same cell. Globoid crystals were generally oval to circular in section. They were always surrounded by a proteinaceous matrix. In a given protein body the number present ranged from a few to numerous. A protein body generally contained only one protein crystalloid. In section, protein crystalloids were irregular or angular in shape. They were composed of substructural particles which formed lattice planes. EDX analysis of tomato seed globoid crystals revealed the presence of P, K, and Mg in all cases, a fact that is consistent with globoid crystals being phytin-rich. Rarely, small amounts of calcium were found along with P, K, and Mg in globoid crystals of each of the tissue regions considered. The distribution pattern of cells with Ca containing globoid crystals was random. Small amounts of Fe and Mn were also found in the globoid crystals of protein bodies from certain cell types. These two elements, unlike calcium, were specific in terms of their distribution. Globoid crystals from the protodermal cells often contained Mn and Fe. The globoid crystals from provascular tissue of radicle, hypocotyl, and cotyledon regions often contained Fe while globoid crystals in the first layer of large cells surrounding these provascular areas always contained Fe. Results from EDX analysis of the proteinaceous material from the protein bodies are presented and discussed as are variations in elemental content due to different fixations.



2009 ◽  
Vol 19 (03n04) ◽  
pp. 167-173 ◽  
Author(s):  
B. B. TRIPATHY ◽  
T. R. RAUTRAY ◽  
SATYA R. DAS ◽  
MANAS R. DAS ◽  
V. VIJAYAN

The analysis of some of the Indian silver coins during British rule were analysed by Energy Dispersive X-Ray Fluorescence Technique. Eight elements namely Cr , Fe , Ni , Cu , Zn , As , Ag and Pb were estimated in this study which also seems to indicate the fragmentation as well as the impoverishment of the power for the regimes that had produced the studied coins. While Cu and Ag were present as major elements, other elements were found to be present in minor concentration.



1991 ◽  
Vol 69 (11) ◽  
pp. 2545-2554 ◽  
Author(s):  
Sara Maldonado ◽  
John N. A. Lott

The structure of protein bodies in the endosperm and embryo of Datura stramonium was studied with a variety of light-and electron-microscopic techniques. Protein bodies had one to several globoid crystals and one or two protein crystalloids in the proteinaceous matrix. Although the embryo protein bodies rarely had more than two globoid crystals, the endosperm protein bodies had varying sizes and numbers of globoid crystals, even within the same cell. Energy-dispersive X-ray analysis of globoid crystals revealed the presence of P, K, and Mg in all cases. Traces of Fe, Mn, and Zn were also found in globoid crystals of protein bodies from certain cell types. The distribution patterns of these three elements were quite specific; for example, Mn traces were found only in the globoid crystals of the protoderm. Neutron-activation analysis of endosperm and embryo tissues was used to quantitatively measure the concentration of Ca, Cl, Cu, I, K, Mg, Mn, Na, and S. The results from structural studies and the element analysis studies are discussed in the context of solanaceous seeds in particular but also with relation to seeds in general. Key words: protein bodies, Datura stramonium, seed, globoid crystals, energy-dispersive X-ray analysis, Solanaceae.



1983 ◽  
Vol 63 (4) ◽  
pp. 1071-1074 ◽  
Author(s):  
J. CHONG ◽  
S. T. ALI-KHAN ◽  
B. B. CHUBEY ◽  
G. H. GUBBELS

An energy dispersive X-ray (EDX) analytical method was used to study the freeze-dried powder of seeds of field peas (Pisum sativum L.) with good and poor cooking quality. EDX analysis of the electron-dense particles in the freeze-dried powder revealed the presence of high concentrations of Mg, P, and K, suggesting that the particles were protein bodies. Seeds with different cooking quality were compared with respect to the ratios of these elements in the dense particles. Statistical analysis indicated a significant correlation between these ratios and cooking quality.Key words: Pisum sativum, protein bodies, elemental analysis



2007 ◽  
Vol 91 (25) ◽  
pp. 251906 ◽  
Author(s):  
Z. Saghi ◽  
X. Xu ◽  
Y. Peng ◽  
B. Inkson ◽  
G. Möbus


1978 ◽  
Vol 56 (19) ◽  
pp. 2408-2414 ◽  
Author(s):  
J. N. A. Lott ◽  
J. S. Greenwood ◽  
C. M. Vollmer

This study was undertaken to discover what elemental losses, if any, were occurring from globoid crystals in seed protein bodies during glutaraldehyde – osmium tetroxide fixation. Unfixed cotyledon and radicle tissue of Cucurbita maxima seed, or tissue after glutaral–dehyde–OsO4 treatment, was quick frozen in liquid N2, ground with a cold mortar and pestle, and low-temperature freeze-dried. Globoid crystals in the freeze-dried powder were subjected to energy dispersive x-ray (EDX) analysis. OsO4 fixation resulted in a major loss of P, Mg, and K from cotyledon globoid crystals and a major loss of P, Mg, K, and Ca from radicle globoid crystals. Despite the loss of elements, the OsO4-fixed globoid crystals were still electron dense. When globoid crystals from glutaraldehyde-fixed, dehydrated, and embedded cotyledon tissue were compared with globoid crystals from glutaraldehyde–OsO4-fixed, dehydrated, and embedded tissue, some extraction was found. The degree of extraction varied from complete loss of P, K, and Mg to loss of K only.Effects of glutaraldehyde–OsO4 fixation upon elemental composition of globoid crystals in several other species was also determined. Brazil nut (Bertholletia excelsa) radicle tissue or cotyledon tissue from walnut (Juglans regia), hazelnut (Corylus avellana), sunflower (Helianthus annuus), golden everlasting daisy (Helichrysum bracteatum), cashew (Anacardium occidentale), pistachio (Pistacia vera), and the Western Australian red-capped gum (Eucalyptus erythrocorys) were fixed either in glutaraldehyde or in glutaraldehyde–OsO4. In these species, EDX analysis of globoid crystal sections showed that OsO4 fixation results in major loss of Mg, K, and Ca. Generally, phosphorus levels were reduced from control values as well. When carrying out EDX analysis studies of globoid crystals, we recommend (1) avoiding any use of OsO4, (2) keeping all fixation, washing, and dehydration times as short as possible, and (3) checking all observations with freeze-dried powders.



1980 ◽  
Vol 34 (5) ◽  
pp. 549-555 ◽  
Author(s):  
S. J. Rothenberg ◽  
P. Denee ◽  
P. Holloway

The surface and bulk properties of five samples of fly ash have been examined by electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). Samples from a conventional pulverized coal combustor, a conventional stoker-fed combustor, and an experimental fluidized bed combustor (FBC) were examined. ESCA data indicated that all samples contained silicon, aluminum, magnesium, calcium, iron, potassium, carbon, oxygen, and sulfur and all but one contained titanium. Samples from the conventional combustors contained more carbon than samples from the FBC. FBC samples contained large amounts of calcium and magnesium. Valence states of some elements were obtained by a detailed examination of selected ESCA peaks. Sputtering was performed on two samples to obtain a depth profile of the composition. The EDXA data confirmed the presence of silicon, aluminum, magnesium, calcium, iron, potassium, sulfur, and titanium while chlorine was detected in some samples. The EDXA data for individual particles exhibited marked particle to particle compositional variation. SEM studies demonstrated that the morphology of FBC samples was different from that of all of the conventional combustor samples examined.



Author(s):  
S. Basu

The imaging capabilities of the scanning electron microscope in conjunction with an energy dispersive x-ray spectrometer (SEM-EDX) allow both topographical and compositional displays that can be readily interpreted. Illustrative evidence of this type would be valuable in forensic determinations, since the associated techniques of image formation, chemical analysis and sample preparation are well understood and documented. Various methods of signal processing are also available, which allow intuitive, stylistic and synthetic interpretation of the image. Forensic applications of two such methods will be stressed in this report using a AMR 1000 SEM. These are deflection modulation (DM) or “Y-modulation” of secondary electron signal^ and x-ray dot mapping.



Sign in / Sign up

Export Citation Format

Share Document