protein bodies
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 16)

H-INDEX

44
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nabodita Sinha ◽  
Avinash Y. Gahane ◽  
Talat Zahra ◽  
Ashwani K. Thakur

AbstractSeed storage proteins, well-known for their nutritional functions are sequestered in protein bodies. However, their biophysical properties at the molecular level remain elusive. Based on the structure and function of protein bodies found in other organisms, we hypothesize that the seed protein bodies might be present as amyloid structures. When visualized with a molecular rotor Thioflavin-T and a recently discovered Proteostat® probe with enhanced sensitivity, the seed sections showed amyloid-like signatures in the protein storage bodies of the aleurone cells of monocots and cotyledon cells of dicots. To make the study compliant for amyloid detection, gold-standard Congo red dye was used. Positive apple-green birefringence due to Congo red affinity in some of the areas of ThT and Proteostat® binding, suggests the presence of both amyloid-like and amyloid deposits in the protein storage bodies. Further, diminishing amyloid signature in germinating seeds implies the degradation of these amyloid structures and their utilization. This study will open new research avenues for a detailed molecular-level understanding of the formation and utilization of aggregated protein bodies as well as their evolutionary roles.


2021 ◽  
Vol 20 (3) ◽  
pp. 286-291
Author(s):  
G. S. Liorber

Currently, by protein therapy or Reiztherapie we mean a number of long-known therapeutic methods: vaccine therapy, serotherapy, venesection, parenteral administration of protein bodies (muscle protein, milk protein, egg white, ovalbumin'a, deuteroalbumos'bi, etc.).


2021 ◽  
Author(s):  
Marija Duvnjak ◽  
Kristina Kljak ◽  
Darko Grbeša

Crop grains accumulate significant amounts of nitrogen in the form of storage proteins. Grain storage proteins are not only important in the aspects of germination but also, storage proteins are a valuable food source in human and animal nutrition. This chapter will give insight into genotype and growing conditions influencing the quantity and quality of storage proteins, primarily maize storage proteins the leading cereal by world production. Main storage proteins in cereals are prolamins, and in maize prolamins are called zeins located within the endosperm in protein agglomerations called protein bodies. Four main classes of zein proteins are: alpha, beta, gamma and delta zein. Each of four zein classes has a distinctive position and role within protein bodies. Prolamin proteins define nutritional value of maize grain not only via amino acid quality but also via starch availability. Starch, the most important energy component of maize grain, is located within starch-protein matrix. Within this matrix, starch granules are surrounded by protein bodies that limit starch availability. In this chapter, we will describe how zein proteins influence characteristics of maize grain and nutritional value of maize.


2020 ◽  
Vol 77 (6) ◽  
pp. 480-494
Author(s):  
S.M. Romanchuk ◽  

History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 544
Author(s):  
Kifayatullah Kakar ◽  
Tran Dang Xuan ◽  
Zubair Noori ◽  
Shafiqullah Aryan ◽  
Gulbuddin Gulab

Nutrient management and fertilizer application are influential elements for high yield and preferred grain quality. Negligible information is available regarding fertilizer application in the paddy fields in Afghanistan. This research elucidates the efficacy of different fertilizers’ application on growth attributes, yield potential, and grain quality of rice. The treatments included the traditional application rate of nitrogen and phosphorus (RD), animal manure (AM), animal manure with 50% nitrogen and phosphorus of the traditional application rate (AMRD), sawdust (SD), and sawdust with 50% nitrogen and phosphorus of the traditional application rate (SDRD). Growth parameters, grain yield and its components, physicochemical properties, and morphological observation using scanning electron microscopy were recorded. The results revealed that the greatest panicle number, spikelet number, and grain yield were recorded in AMRD and SDRD treatments. Both AMRD and SDRD treatments increased the percentage of protein, amylose, and lipid contents, as well as the percentage of perfect grain compared to the RD treatment. Rice grain in RD treatment had very few protein bodies and their traces (pits), as well as the formation of amyloplasts and starch granules, were normal. However, AMRD and SDRD increased the number of protein bodies and their pits in the rice endosperm. The shapes of the amyloplasts were round and polyhedral with diverse sizes. Starch granules were polygonal with sharply defined edges. This research encourages farmers to adopt the combined application of manures and fertilizers to decrease the dependence on inorganic fertilizers.


2020 ◽  
Vol 126 (6) ◽  
pp. 1039-1048
Author(s):  
Krzysztof Lustofin ◽  
Piotr Świątek ◽  
Piotr Stolarczyk ◽  
Vitor F O Miranda ◽  
Bartosz J Płachno

Abstract Background and Aims Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of ‘futterhaare’ (‘feeding hairs’) and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. Methods The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. Key Results No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that self-pollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Conclusion Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors.


Sign in / Sign up

Export Citation Format

Share Document