X-Ray Diffraction Analysis of Fly ASH

1987 ◽  
Vol 31 ◽  
pp. 331-342 ◽  
Author(s):  
G.J. McCarthy ◽  
D.M. Johansen ◽  
S.J. Steinwand ◽  
A. Thedchanamoorthy

AbstractMethods for, and results from, x-ray diffraction analysis of large numbers of fly ash samples obtained from U.S. power plants are described. Qualitative XRD indicates that low-calcium/Class F fly ash (usually derived from bituminous coal) consists typically of the crystalline phases quartz, mullite, hematite and magnetite in a matrix of aluminosilicate glass. Highcalcium fly ash (derived from low-rank coal) has a much more complex assemblage of crystalline phases that typically includes these four phases plus lime, periclase, anhydrite, alkali sulfates, tricalcium aluminate, dicalcium silicate, melilite, merwinlte and a sodalite-structure phase. Glass compositions among the particles are more heterogeneous and range from calcium aluminate to sodium calcium aluminosilicate, Every ash studied Is mixed with an internal Intensity standard (rutile) so that Intensity ratios can be used to make comparisons of the relative amounts of crystalline phases. An error analysis was performed to define the level of uncertainty in making these comparisons. These intensity ratios will be used for quantitative XRD phase analyses when reference intensity ratios for each fly ash phase become available.

1990 ◽  
Vol 34 ◽  
pp. 387-394 ◽  
Author(s):  
G. J. McCarthy ◽  
J. K. Solem

AbstractA protocol for semi-quantitative XRD analysis of fly ash has been applied to 178 ashes in studies of the typical mineralogy of high-calcium and iow-calcium fly ash, the consistency of fly ash mineralogy from a typical power station, the partitioning of chemical constituents into crystalline phases, and the crystalline phases relevant to the use of fly ash in concrete.


1988 ◽  
Vol 136 ◽  
Author(s):  
Gregory J. McCarthy ◽  
A. Thedchanamoorthy

ABSTRACTA protocol for relatively inexpensive and rapid semi-quantitative x-ray diffraction analysis of fly ash mineralogy by the Reference Intensity Ratio (RIR) method is described. RIR's for the common crystalline phases in fly ashes derived from low rank and bituminous coal are given. The method is semi-quantitative for some phases because of unavoidable overlaps of the stronger peaks suitable for quantitation. Use of the protocol is illustrated with the four fly ash Standard Reference Materials supplied by the National Institute of Standards and Technology. Recommendations for implementation of this protocol in other laboratories and for improvements in quantitation of fly ash mineralogy are given.


2000 ◽  
Vol 15 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Ryan S. Winburn ◽  
Dean G. Grier ◽  
Gregory J. McCarthy ◽  
Renee B. Peterson

Rietveld quantitative X-ray diffraction analysis of the fly ash Standard Reference Materials (SRMs) issued by the National Institute of Standards and Technologies was performed. A rutile (TiO2) internal standard was used to enable quantitation of the glass content, which ranged from 65% to 78% by weight. TheGSASRietveld code was employed. Precision was obtained by performing six replicates of an analysis, and accuracy was estimated using mixtures of fly ash crystalline phases and an amorphous phase. The three low-calcium (ASTM Class F) fly ashes (SRM 1633b, 2689 and 2690) contained four crystalline phases: quartz, mullite, hematite, and magnetite. SRM 1633b also contained a detectable level of gypsum, which is not common for this type of fly ash. The high-calcium (ASTM Class C) fly ash, SRM 2691, had eleven crystalline phases and presented a challenge for the version ofGSASemployed, which permits refinement of only nine crystalline phases. A method of analyzing different groups of nine phases and averaging the results was developed, and tested satisfactorily with an eleven-phase simulated fly ash. The results were compared to reference intensity ratio method semiquantitative analyses reported for most of these SRMs a decade ago.


2013 ◽  
Vol 750-752 ◽  
pp. 2044-2047 ◽  
Author(s):  
Zheng Xu ◽  
Xiao Zheng Yu ◽  
Zhi Gang Shen

The compacted even nanonickel film was coated on the surface of cenospheres of the fly ash from coal-burning power plants (3070 μm, particle density 0.3344g/cm3) which are hollow spheres with a shell consisting of quartz and mullite by magnetic sputtering technology. The optical microscope, scanning electric microscope and X-ray diffraction was use to examine the properties and the thickness of the coated nanonickel film. The results show that magnetic sputtering method is efficient to coat smooth, even and tightly combined nanonickel films on the cenospheres surface. The coated cenospheres can be widely used in industries.


2019 ◽  
Vol 49 (2) ◽  
pp. 20170609
Author(s):  
M. N. Ervina Efzan ◽  
N. Siti Syazwani ◽  
A. M. Mustafa Al Bakri ◽  
Wai Liew Kia

Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 312 ◽  
Author(s):  
Henryk R. Parzentny ◽  
Leokadia Róg

Based on the results of tests on feed coal from the Lublin Coal and Upper Silesian Coal Basin and its fly ash and slag carried out using X-ray diffraction and X-ray fluorescence analysis, atomic emission spectroscopy, and scanning electron microscopy, it was found that in feeds, coal Th is associated with phosphates and U with mineral matter. The highest Th content was found in anhedral grains of monazite and in Al-Si porous particles of fly ash of <0.05 mm size; whereas in the slag, Th is concentrated in the massive Al-Si grains and in ferrospheres. U is mainly concentrated in the Al-Si surface of porous grains, which form a part of fly ash of <0.05 mm size. In the slag, U is to be found in the Al-Si massive grains or in a dispersed form in non-magnetic and magnetic grains. Groups of mineral phase particles have been identified that have the greatest impact on the content of Th and U in whole fly ash and slag. The research results contained in this article may be important for predicting the efficiency of Th and U leaching from furnace waste storage sites and from falling dusts to soils and waters.


1986 ◽  
Vol 86 ◽  
Author(s):  
G. J. McCarthy ◽  
O. E. Manz ◽  
D. M. Johansen ◽  
S. J. Steinwand ◽  
R. J. Stevenson

Fly ashes derived from low-rank coals mined principally in Montana, Wyoming and North Dakota are being studied by the Western Fly Ash Research, Development and Data Center [1]. Previous studies of the mineralogy of western U.S. fly ash by McCarthy et al. [1–3] using x-ray diffraction (XRD) form the framework of the present study. A database of chemical, mineralogical and physical properties, along with precursor coal characteristics, is being assembled. Based on studies to date of several hundred fly ash samples derived from lignite and subbituminous coals, as well as from several bituminous ashes, correlations of chemistry and mineralogy have been hypothesized and are being tested. These correlations are discussed below.


MRS Advances ◽  
2019 ◽  
Vol 4 (57-58) ◽  
pp. 3163-3169
Author(s):  
J. López-Cuevas ◽  
J.C. Rendón-Angeles ◽  
J.L. Rodríguez-Galicia ◽  
C.A. Gutiérrez-Chavarría

ABSTRACTAn alternative method for the standardless quantitative x-ray diffraction analysis of mixtures of inorganic crystalline phases proposed in the literature several years ago is presented. Our method requires only previously calculated μ*i values from tabulated data for all phases present in the mixtures. It does not require either the determination of calibration constants or the use of external standards, but it does require that the number of analyzed mixtures is larger than or equal to the number of phases present in them, and that the chemical composition of the mixtures are significantly different from each other. The integrated intensities of the chemically pure phases are estimated by a least-squares procedure from XRD data obtained from the mixtures. The method was tested against data published in the literature, with good results. Finally, a general expression for the “Normalized Height Law” proposed on an empirical basis by other researchers, has been theoretically derived.


Sign in / Sign up

Export Citation Format

Share Document