Revisiting the Rius’ Standardless Method for the Quantitative X-Ray Diffraction Analysis of Mixtures of Inorganic Crystalline Phases

MRS Advances ◽  
2019 ◽  
Vol 4 (57-58) ◽  
pp. 3163-3169
Author(s):  
J. López-Cuevas ◽  
J.C. Rendón-Angeles ◽  
J.L. Rodríguez-Galicia ◽  
C.A. Gutiérrez-Chavarría

ABSTRACTAn alternative method for the standardless quantitative x-ray diffraction analysis of mixtures of inorganic crystalline phases proposed in the literature several years ago is presented. Our method requires only previously calculated μ*i values from tabulated data for all phases present in the mixtures. It does not require either the determination of calibration constants or the use of external standards, but it does require that the number of analyzed mixtures is larger than or equal to the number of phases present in them, and that the chemical composition of the mixtures are significantly different from each other. The integrated intensities of the chemically pure phases are estimated by a least-squares procedure from XRD data obtained from the mixtures. The method was tested against data published in the literature, with good results. Finally, a general expression for the “Normalized Height Law” proposed on an empirical basis by other researchers, has been theoretically derived.

Author(s):  
Süheyla Özbey ◽  
Nilgün Karalı ◽  
Aysel Gürsoy

AbstractIn this study 4-(3-coumarinyl)-3-benzyl-4-thi azolin-2-one 4-methylbenzylidenehydrazone 3 was synthesised. An independent proof of the thiazolylhydrazone structure of 3 was achieved by single crystal X-ray diffraction analysis. Elemental analyses and spectral data (IR,


1990 ◽  
Vol 5 (3) ◽  
pp. 121-124 ◽  
Author(s):  
David J. Devlin ◽  
Kamal E. Amin

AbstractThe relative intensities ratios for the determination of the relative amounts of alpha and beta phases in silicon nitride and the relative amounts of delta yttrium disilicate (Y2Si2O7) and nitrogen apatite [Y5(SiO4)3N] are reported. These constants were determined using an iterative method applicable when the pure phases are not easily prepared. In addition, a calibration curve was obtained for the quantitative measurement of free silicon in silicon nitride over the range 0 to 0.3% by weight of Si.


2017 ◽  
Vol 17 (2) ◽  
pp. 107-110
Author(s):  
K. Stec ◽  
J. Podwórny ◽  
B. Psiuk ◽  
Ł. Kozakiewicz

Abstract Using the available analytical methods, including the determination of chemical composition using wavelength-dispersive X-ray fluorescent spectroscopy technique and phase composition determined using X-ray diffraction, microstructural observations in a highresolution scanning microscope equipped with an X-ray microanalysis system as well as determination of characteristic softening and sintering temperatures using high-temperature microscope, the properties of particular chromite sands were defined. For the study has been typed reference sand with chemical properties, physical and thermal, treated as standard, and the sands of the regeneration process and the grinding process. Using these kinds of sand in foundries resulted in the occurrence of the phenomenon of the molding mass sintering. Impurities were identified and causes of sintering of a moulding sand based on chromite sand were characterized. Next, research methods enabling a quick evaluation of chromite sand suitability for use in the preparation of moulding sands were selected.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 340 ◽  
Author(s):  
Oswaldo Sánchez-Dena ◽  
Carlos J. Villagómez ◽  
César D. Fierro-Ruíz ◽  
Artemio S. Padilla-Robles ◽  
Rurik Farías ◽  
...  

Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made.


2016 ◽  
Vol 368 ◽  
pp. 99-102
Author(s):  
Lukáš Zuzánek ◽  
Ondřej Řidký ◽  
Nikolaj Ganev ◽  
Kamil Kolařík

The basic principle of the X-ray diffraction analysis is based on the determination of components of residual stresses. They are determined on the basis of the change in the distance between atomic planes. The method is limited by a relatively small depth in which the X-ray beam penetrates into the analysed materials. For determination of residual stresses in the surface layer the X-ray diffraction and electrolytic polishing has to be combined. The article is deals with the determination of residual stress and real material structure of a laser-welded steel sample with an oxide surface layer. This surface layer is created during the rolling and it prevents the material from its corrosion. Before the X-ray diffraction analysis can be performed, this surface layer has to be removed. This surface layer cannot be removed with the help of electrolytic polishing and, therefore, it has to be removed mechanically. This mechanical procedure creates “technological” residual stress in the surface layer. This additional residual stress is removed by the electrolytic polishing in the depth between 20 and 80 μm. Finally, the real structure and residual stresses can be determined by using the X-ray diffraction techniques.


2009 ◽  
Vol 24 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Jennifer S. Le Blond ◽  
Gordon Cressey ◽  
Claire J. Horwell ◽  
Ben J. Williamson

Quantification of potentially toxic single mineral phases in natural dusts of heterogeneous composition is critical for health hazard assessment. For example, crystalline silica, a human carcinogen, can be present as respirable particles in volcanic ash such as quartz, cristobalite, or tridymite. A method to rapidly identify the proportions of crystalline silica within mixed dust samples, such as volcanic ash, is therefore required for hazard managers to assess the potential risk of crystalline silica exposure to local populations. Here we present a rapid method for quantifying the proportions of single phases in the mineral assemblage of mixed dusts using X-ray diffraction (XRD) with a fixed curved position-sensitive detector. The method is a modified version of the whole-pattern peak-stripping (PS) method (devised by Cressey and Schofield [Powder Diffr.11, 35–39 (1996)]) using an internal attenuation standard (IAS) but, unlike the PS method, it requires no knowledge of other phases present in the sample. Ten synthetic sample mixtures were prepared from known combinations of four pure phases (cristobalite, hematite, labradorite, and obsidian), chosen to represent problematic constituents of volcanic ash, and analyzed by XRD. Results of the IAS method were directly compared with those of the PS method. The proportions of cristobalite estimated using the methods were comparable and accurate to within 3 wt %. The new IAS method involved less sample preparation and processing and, therefore, was faster than the original PS method. It therefore offers a highly accurate rapid technique for determination of the proportions of individual phases in mixed dusts.


2007 ◽  
Vol 40 (4) ◽  
pp. 694-701
Author(s):  
Thaung Lwin

Knudsen [X-ray Spectrom.(1981),10, 54–561] proposed and demonstrated a least-squares approach to estimating the unknown parameters of a system of equations required for calibration in X-ray diffraction analysis. The approach is an ordinary least-squares approach which does not incorporate information on the errors of the measured intensities for a set of samples used as standards. The purpose of the present paper is to show that a functional relationship model can be applied to the problem to account for all the variation due to sampling and measurement error in the peak intensities. It is also shown that Knudsen's calibration estimator can be regarded as an approximation to a more general and potentially more efficient weighted least-squares estimator derived from the functional relationship model. The closeness of the approximation depends on the nature of the covariance structure of the intensity measurements.


Sign in / Sign up

Export Citation Format

Share Document