scholarly journals High Resolution Order Tracking at Extreme Slew Rates Using Kalman Tracking Filters

1995 ◽  
Vol 2 (6) ◽  
pp. 507-515 ◽  
Author(s):  
Håvard Vold ◽  
Jan Leuridan

The analysis of the periodic components in noise and vibration signals measured on rotating equipment such as car power trains, must be done more and more under rapid changes of an axle, or reference RPM. Normal tracking filters (analog or digital implementations) have limited resolution in such situations; wavelet methods, even when applied after resampling the data to be proportional to an axle RPM, must compromise between time and frequency resolution. The authors propose the application of nonstationary Kalman filters for the tracking of periodic components in such noise and vibration signals. These filters are designed to accurately track signals with a known structure among noise and signal components of different, “unknown,” structure. The tracking characteristics of these filters, i.e., the predicted signal amplitude versus time values versus exact signal amplitude versus time values, can be tailored to accurate tracking of harmonics buried in other signal components and noise, even at high rates of change of the reference RPM. A key to the successful construction is the precise knowledge of the structure of the signal to be tracked. For signals that vary with an axle RPM, an accurate estimate of the instantaneous RPM is essential, and procedures to this end will also be presented.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Junhua Wu ◽  
Xinglin Chen ◽  
Zheshu Ma

Carbon fibre composites have a promising application future of the vehicle, due to its excellent physical properties. Debonding is a major defect of the material. Analyses of wave packets are critical for identification of the defect on ultrasonic nondestructive evaluation and testing. In order to isolate different components of ultrasonic guided waves (GWs), a signal decomposition algorithm combining Smoothed Pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking is presented. In the algorithm, the time-frequency distribution of GW is first obtained by using Smoothed Pseudo Wigner-Ville distribution. The frequencies of different modes are computed based on summation of the time-frequency coefficients in the frequency direction. On the basis of these frequencies, isolation of different modes is done by Vold–Kalman filter order tracking. The results of the simulation signal and the experimental signal reveal that the presented algorithm succeeds in decomposing the multicomponent signal into monocomponents. Even though components overlap in corresponding Fourier spectrum, they can be isolated by using the presented algorithm. So the frequency resolution of the presented method is promising. Based on this, we can do research about defect identification, calculation of the defect size, and locating the position of the defect.


1982 ◽  
Vol 71 (S1) ◽  
pp. S13-S13
Author(s):  
Jean Nicolas ◽  
Gilles Lemire

2011 ◽  
Vol 130-134 ◽  
pp. 1681-1685 ◽  
Author(s):  
Guang Tian ◽  
Hao Tian ◽  
Guang Sheng Liu ◽  
Jin Hui Zhao ◽  
Li Ping Luo

The diagnosis of compound-fault is always a difficult point, and there is not an effective method in equipment diagnosis field, then a new method of compound-fault diagnosis was presented. The vibration signals at start-up in the gearbox are non-stationary signals, and traditional ways of diagnosis have low precision. Order tracking and wavelet packet and rough sets theory are introduced in the compound-fault diagnosis of bearing. First, the vibration signals at start-up were resampled using computer order tracking arithmetic and equal angle distributed vibration signals were obtained, and wavelet packet has been used for equal angle distributed vibration signals decomposition and reconstruction. Then, energy distribution of every frequency band can be calculated according to normalization process. A new feature vector can be obtained, then clear and concise decision rules can be obtained by rough sets theory. Finally, the result of compound-fault example proves that the proposed method has high validity and more amplitude appliance foreground.


2021 ◽  
pp. 1-33
Author(s):  
Jaafar Alsalaet

Abstract In this work, the reverse dispersion entropy (RDE) is used to process the squared envelope signal in order to detect nonstationarites. Based on the idea of spectral kurtosis (SK) and kurtogram, the squared envelope signal is first extracted by applying STFT to vibration signal. Then, as an alternative to negative Shannon entropy, the RDE is used to process the squared envelope to detect the range of frequencies at which the transients occur. The RDEgram color-coded map is used to represent the RDE values as a function of frequency and frequency resolution from which the ideal filter parameters can be inferred. Once, the best frequency and frequency bandwidth pair are found, an optimum FIR filter can be designed to filter the original vibration signal. The proposed method is tested against simulated and actual vibration signals and proved to be superior to existing methods.


Author(s):  
J Černetič

Cavitation in a kinetic pump reduces delivery head and efficiency of the pump. It also causes mechanical damage and an increase of vibrations and noise. Therefore, it is important to detect inception and development of a cavitation phenomenon in the pump. This article deals with signals of vibration and noise, which will be used for detection and monitoring of the cavitation in kinetic pumps, and also to prevent the effect of the cavitation in the pump and pumping system. When the cavitation is increasing, the flowing conditions are changing, which leads to an increase of vibrations of the pump and emitted noise in the surroundings. Because vibrations and noise are transferred from the pump through its casing, the signal is non-uniformly distorted due to transfer losses and structure of the casing surfaces. Noise and vibrations are increasing steadily, but in some specific frequency ranges the signal is more pronounced than in other parts of the spectrum. Experimental results have shown that vibration and noise in the audible spectrum can be successfully used for cavitation detection and its prevention.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Danhui Dan ◽  
Jiongxin Gong ◽  
Yiming Zhao

We propose a 2D representation in the frequency-decay factor plane of an arbitrary real-world vibration signal. The signal is expressed as the sum of a decayed-attenuation sine term modulated by an amplitude function and a noise residue. We extend the combined approach of Capon estimation and amplitude and phase estimation (CAPES) to damped real vibration signals (DR-CAPES). In the proposed DR-CAPES method, the high-resolution amplitude and phase are estimated simultaneously for both angular frequency and decay factor grids. The performance of the proposed approach is tested numerically with noisy vibration data. Results show that the DR-CAPES method has an excellent frequency resolution, which helps to overcome difficulties in spectrum estimation when vibration modes are very close, and a small bias, which makes it suitable for obtaining accurate amplitude spectrums. The results also indicate that the proposed method can accurately estimate the amplitude spectrum with the use of averaging and denoising processes.


1969 ◽  
Vol 91 (3) ◽  
pp. 475-478 ◽  
Author(s):  
H. L. Moses ◽  
D. A. Small ◽  
G. A. Cotta

The response of the back pressure signal resulting from nozzle flow suddenly restricted by a downstream surface is described. Experimental results are presented for the periodic signal from a small nozzle in close proximity to a rotating gear. A simplified analysis for the back pressure as a function of time is developed and the calculated signal amplitude versus frequency is compared with the experimental results.


2019 ◽  
Vol 20 (12) ◽  
pp. 723-731
Author(s):  
V. N. Yakimov ◽  
V. I. Batyschev ◽  
A. V. Mashkov

The article is devoted to the problem of developing a digital algorithm for operational harmonic analysis of complex vibration signals. The basis for solving this problem was the generalized equation of statistical measurements, which defines the measurement procedure as the sequential execution of interrelated measurement and computational transformations. During the development of the algorithm, special attention is paid to analog-to-digital conversion because it directly affects the computational efficiency of digital procedures for obtaining the final result. As such a conversion, the use of binarysign analog-stochastic quantization is justified, which allows performing two-level quantization without systematic error regardless of the statistical properties of the analyzed signals. The discrete-event model of the binary-sign analog-stochastic quantization result allowed for the analytical calculation of integration operations in the transition to estimating the amplitude spectrum in digital form. As a result, the developed algorithm of harmonic analysis does not require performing digital multiplication operations typical for classical algorithms, which are based on the calculation of the direct discrete Fourier transform. The execution of the algorithm is reduced to the implementation of the addition and subtraction arithmetic operations of the cosine-function values in the time moments determined by the result of the binary-sign analogue-stochastic quantization. The exclusion of digital multiplication operations provided an increase in the computational efficiency of amplitude spectrum estimation. Laboratory studies of the developed algorithm were carried out using simulation modeling. The simulation results showed that the algorithm allows calculating estimates of the amplitude spectrum of complex signals with high accuracy and frequency resolution in the presence of additive noise. In real conditions, the testing of the developed algorithm was carried out during bench studies of the operational status of the MAZ-206067 bus, designed for the transportation of passengers on urban and suburban routes of average workload. Analysis of the results of experimental studies confirmed the possibility of using the algorithm as part of the diagnosability provision for operational monitoring of vibration signals in a complex noise environment.


Sign in / Sign up

Export Citation Format

Share Document