envelope signal
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Qiuyang Zhou ◽  
Cai Yi ◽  
Chenguang Huang ◽  
Jianhui Lin

Minimum correlated generalized Lp/Lq deconvolution (MCG-Lp/Lq-D) is an important tool to detect periodic impulses in vibration mixture. It is proved to be a more stable technique than maximum correlated kurtosis deconvolution (MCKD) to recover the fault impulse under strong noise conditions. However, MCG-Lp/Lq-D still has limitations. One of the necessary conditions for the success of MCG-Lp/Lq-D is to provide a precise period of fault. An imprecise prior period will lead to performance degradation or even failure of the method. Therefore, in this paper, a MCG-Lp/Lq-D with adaptive fault period estimation capability is proposed, adaptive minimum correlated generalized Lp/Lq deconvolution (AMCG-Lp/Lq-D). The proposed method uses the autocorrelation function of envelope signal to estimate the fault period adaptively in each iteration and then takes the estimated period as the input parameter of MCG-Lp/Lq-D for the next iteration optimization. The proposed method does not require precise prior fault period input, which greatly improves the fault recovery accuracy and application range of MCG-Lp/Lq-D. Eventually, simulated and experimental data verify the effectiveness and superiority of AMCG-Lp/Lq-D.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2008
Author(s):  
Bingbing Hu ◽  
Shuai Zhang ◽  
Ming Peng ◽  
Jie Liu ◽  
Shanhui Liu ◽  
...  

The enhancement of the detection of weak signals against a strong noise background is a key problem in local gear fault diagnosis. Because the periodic impact signal generated by local gear damage is often modulated by high-frequency components, fault information is submerged in its envelope signal when demodulating the fault signal. However, the traditional bistable stochastic resonance (BSR) system cannot accurately match the asymmetric characteristics of the envelope signal because of its symmetrical potential well, which weakens the detection performance for weak faults. In order to overcome this problem, a novel method based on underdamped asymmetric periodic potential stochastic resonance (UAPPSR) is proposed to enhance the weak feature extraction of the local gear damage. The main advantage of this method is that it can better match the characteristics of the envelope signal by using the asymmetry of its potential well in the UAPPSR system and it can effectively enhance the extraction effect of periodic impact signals. Furthermore, the proposed method enjoys a good anti-noise capability and robustness and can strengthen weak fault characteristics under different noise levels. Thirdly, by reasonably adjusting the system parameters of the UAPPSR, the effective detection of input signals with different frequencies can be realized. Numerical simulations and experimental tests are performed on a gear with a local root crack, and the vibration signals are analyzed to validate the effectiveness of the proposed method. The comparison results show that the proposed method possesses a better resonance output effect and is more suitable for weak fault feature extraction under a strong noise background.


2021 ◽  
pp. 1-33
Author(s):  
Jaafar Alsalaet

Abstract In this work, the reverse dispersion entropy (RDE) is used to process the squared envelope signal in order to detect nonstationarites. Based on the idea of spectral kurtosis (SK) and kurtogram, the squared envelope signal is first extracted by applying STFT to vibration signal. Then, as an alternative to negative Shannon entropy, the RDE is used to process the squared envelope to detect the range of frequencies at which the transients occur. The RDEgram color-coded map is used to represent the RDE values as a function of frequency and frequency resolution from which the ideal filter parameters can be inferred. Once, the best frequency and frequency bandwidth pair are found, an optimum FIR filter can be designed to filter the original vibration signal. The proposed method is tested against simulated and actual vibration signals and proved to be superior to existing methods.


2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Wenpeng Liu ◽  
Shaopu Yang ◽  
Qiang Li ◽  
Yongqiang Liu ◽  
Rujiang Hao ◽  
...  

A wheelset bearing is one of the main components of the train bogie frame. The early fault detection of the wheelset bearing is quite important to ensure the safety of the train. Among numerous diagnostic methods, envelope analysis is one of the most effective approaches in the detection of bearing faults which has been amply applied, but its validity greatly depends on the informative frequency band (IFB) determined. For the wheelset bearing faulty signal, it is often difficult to identify the IFB and extract fault characteristics due to the influence of complex operating conditions. To address this problem, a novel method to select optimal IFB, called the Mkurtogram, is proposed for railway wheelset bearings fault diagnosis. It takes the multipoint kurtosis (Mkurt) of unbiased autocorrelation (AC) of the squared envelope signal generated from sub-bands as assessment indicator for the first time. The fundamental concept which inspires this proposed method is to make full use of regular periodicity of AC of squared envelope signal. In the AC domain, the impulsiveness and periodicity, two distinctive signatures of the repetitive transients, have achieved a united representation by Mkurt. A simulated signal with multiple interferences and two experimental signals collected from wheelset bearings are applied to verify its performances and advantages. The results indicate that the proposed method is more effective to extract the wheelset bearings fault feature under complex interferences. It can not only decrease the influence of large impulse interference and the discrete harmonics interference, but also effectively overcome the influence of amplitude fluctuation caused by variable working conditions. Moreover, based on the periodic directivity of Mkurt, the proposed method also can be applied to the compound faults diagnosis of the wheelset bearing.


Author(s):  
Len Gelman ◽  
Tejas H. Patel ◽  
Brian Murray ◽  
Allan Thomson

Bearing defect diagnosis is traditionally done using the demodulation/enveloping technology. Diagnosis is mostly based on the spectrum of the squared envelope signal. In literature, the use of the higher order spectra (HOS) has shown to have a tremendous potential for vibration based diagnostics. In this paper we implemented and experimentally validated the higher order spectra based on the envelope analysis for the diagnosis of ball bearing defects. The implemented technology employs the spectral kurtosis to obtain a frequency band for the demodulation and the third order normalized spectra, i.e. the bicoherence for diagnosis of bearing fault. The high effectiveness of the diagnostics of the implemented technology has been experimentally revealed and compared with that of well-known demodulation/enveloping technology.


2020 ◽  
Vol 10 (21) ◽  
pp. 7796 ◽  
Author(s):  
Wei-tao Du ◽  
Qiang Zeng ◽  
Yi-min Shao ◽  
Li-ming Wang ◽  
Xiao-xi Ding

Demodulation is one of the most useful techniques for the fault diagnosis of rotating machinery. The commonly used demodulation methods try to select one sensitive sub-band signal that contains the most fault-related components for further analysis. However, a large number of the fault-related components that exist in other sub-bands are ignored in the commonly used envelope demodulation methods. Based on a weighted-empirical mode decomposition (EMD) de-noising technique and time–frequency (TF) impulse envelope analysis, a multi-scale demodulation method is proposed for fault diagnosis. In the proposed method, EMD is first employed to divide the signal into some IMFs (intrinsic mode functions). Then, a new weighted-EMD de-noising technique is presented, and different weights are assigned to IMFs for construction according to their fault-related degrees; thus, the fault-unrelated components are suppressed to improve the signal-to-noise ratio (SNR). After that, continuous wavelet transformation (CWT) is adopted to obtain the time–frequency representation (TFR) of the de-noised signal. Subsequently, the fault-related components in the entire frequency range scale are calculated together, referring to the TF impulse envelope signal. Finally, a fault diagnosis result can be obtained after the fast Fourier transformation of the TF impulse envelope signal. The proposed method and three commonly used methods are applied to the fault diagnosis of a planetary gearbox with a sun gear spalling fault and a fixed shaft gearbox with a crack fault. The results show that the proposed method can effectively detect gear faults and yields better performance than other methods.


2020 ◽  
Vol 485 ◽  
pp. 115529
Author(s):  
Chang Yan ◽  
Ming Zhao ◽  
Jing Lin ◽  
Kaixuan Liang ◽  
Zhiqiang Zhang

Author(s):  
Nawadita Parajuli ◽  
Upul Gunawardana ◽  
Gaetano Gargiulo ◽  
Diego Felipe Ulloa ◽  
Neethu Sreenivasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document