scholarly journals Neuropsychology and Advances in Memory Function

1997 ◽  
Vol 10 (4) ◽  
pp. 109-115
Author(s):  
B. Gordon

Recent developments in the functional and neural bases of several aspects of memory are described including long term cortical memory storage, the transition from immediate to permanent memory mediated by medial temporal structures, working memory, memory retrieval, and implicit memory. These are linked to current data on the nature of anterograde and retrograde amnesia in the degenerative diseases, and also to issues in the clinical diagnosis of memory impairments. Understanding the bases of memory can inform the diagnosis of memory impairments in degenerative diseases, and the patterns of impairment seen in the degenerative diseases can help contribute to knowledge of the mechanisms of normal memory.

2017 ◽  
Vol 114 (17) ◽  
pp. E3536-E3545 ◽  
Author(s):  
Qianfa Long ◽  
Dinesh Upadhya ◽  
Bharathi Hattiangady ◽  
Dong-Ki Kim ◽  
Su Yeon An ◽  
...  

Status epilepticus (SE), a medical emergency that is typically terminated through antiepileptic drug treatment, leads to hippocampus dysfunction typified by neurodegeneration, inflammation, altered neurogenesis, as well as cognitive and memory deficits. Here, we examined the effects of intranasal (IN) administration of extracellular vesicles (EVs) secreted from human bone marrow-derived mesenchymal stem cells (MSCs) on SE-induced adverse changes. The EVs used in this study are referred to as A1-exosomes because of their robust antiinflammatory properties. We subjected young mice to pilocarpine-induced SE for 2 h and then administered A1-exosomes or vehicle IN twice over 24 h. The A1-exosomes reached the hippocampus within 6 h of administration, and animals receiving them exhibited diminished loss of glutamatergic and GABAergic neurons and greatly reduced inflammation in the hippocampus. Moreover, the neuroprotective and antiinflammatory effects of A1-exosomes were coupled with long-term preservation of normal hippocampal neurogenesis and cognitive and memory function, in contrast to waned and abnormal neurogenesis, persistent inflammation, and functional deficits in animals receiving vehicle. These results provide evidence that IN administration of A1-exosomes is efficient for minimizing the adverse effects of SE in the hippocampus and preventing SE-induced cognitive and memory impairments.


2016 ◽  
Author(s):  
Adam Henry Marblestone ◽  
Greg Wayne ◽  
Konrad P Kording

Neuroscience has focused on the detailed implementation of computation, studying neural codes, dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost function, often using simple and relatively uniform initial architectures. Two recent developments have emerged within machine learning that create an opportunity to connect these seemingly divergent perspectives. First, structured architectures are used, including dedicated systems for attention, recursion and various forms of short- and long-term memory storage. Second, cost functions and training procedures have become more complex and are varied across layers and over time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the brain optimizes cost functions, (2) these cost functions are diverse and differ across brain locations and over development, and (3) optimization operates within a pre-structured architecture matched to the computational problems posed by behavior. Such a heterogeneously optimized system, enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely targeted to the needs of the organism. We suggest directions by which neuroscience could seek to refine and test these hypotheses.


2021 ◽  
Author(s):  
Erika Atucha ◽  
Shih-Pi Ku ◽  
Michael T. Lippert ◽  
Magdalena M. Sauvage

AbstractA well–accepted view in memory research is that retrieving the gist of a memory over time depends on the cortex, typically the prefrontal cortex, while retrieving its precision relies on the hippocampus. More recent advances indicate that the hippocampal subfield CA1, as opposed to CA3, remains engaged even for retrieving very remote memories and that this engagement coincides with a maximal recruitment of parahippocampal cortical areas (LEC, MEC, PER and POR)1. Using a time-window comparable to that used in human long-term memory studies, here we show that CA1 is necessary for retrieving the gist of a memory independently of its age while memory precision specifically depends on CA3 in a time-dependent manner. The precision for the memory of a context-footshock association was tested in mice after one day or very remotely (i.e. after 6 months or one year) allowing for the natural fading of the memory trace. Retrieving recent memories engaged both CA1 and CA3 in control mice as revealed by high levels of RNA of the immediate-early gene Arc, strongly tied to synaptic plasticity and memory function. Optogenetic inhibition of CA3 cell firing led to the loss of memory precision, i.e. the retrieval of the gist memory selectively supported by CA1. In contrast, CA1 inhibition abolished memory retrieval and reduced both CA1 and CA3’s activity. At very remote tests, controls retrieved only the gist of the event by recruiting CA1 and parahippocampal areas. Retrieving this gist was selectively abrogated upon CA1 optogenetic inactivation that dramatically reduced parahippocampal activity. Our findings indicate that the hippocampus, specifically CA1, is required for gist memory retrieval even for very remote memories that were previously reported to be hippocampal-independent, while CA3 is necessary for recalling precise memories in a time-dependent manner.


1993 ◽  
Vol 163 (2) ◽  
pp. 217-222 ◽  
Author(s):  
James R. G. Carrie

A digital computer program generating a simulated neural network was used to construct a model which can show behaviour resembling human associative memory. The experimental network uses distributed storage, and, in this respect, its functional organisation resembles that suggested by reported observations of neuronal activity in the human temporal lobe during memory storage and recall. Inactivation of increasing numbers of randomly distributed network units simulated advancing cerebral atrophy. This caused progressive impairment of performance, resembling the gradual deterioration of memory function observed in chronic diffuse cerebral degeneration. Unit inactivation had similar effects on recall whether the same units were inactivated before or after learning. This differs from most relevant observations of amnesia resulting from diffuse cerebral disease. While the model may functionally resemble long-term information storage sites in the brain, other cerebral mechanisms participating in learning and remembering are also damaged by diffuse cerebral atrophy.


2020 ◽  
Author(s):  
Tom Joseph Barry ◽  
David John Hallford ◽  
Keisuke Takano

Decades of research has examined the difficulty that people with psychiatric diagnoses, such as Major Depressive Disorder, Schizophrenia Spectrum Disorders, and Posttraumatic Stress Disorder, have in recalling specific autobiographical memories from events that lasted less than a day. Instead, they seem to retrieve general events that have occurred many times or which occurred over longer periods of time, termed overgeneral memory. We present the first transdiagnostic meta-analysis of memory specificity/overgenerality, and the first meta-regression of proposed causal mechanisms. A keyword search of Embase, PsycARTICLES and PsycINFO databases yielded 74 studies that compared people with and without psychiatric diagnoses on the retrieval of specific (k = 85) or general memories (k = 56). Multi-level meta-analysis confirmed that people with psychiatric diagnoses typically recall fewer specific (g = -0.864, 95% CI[-1.030, -0.698]) and more general (g = .712, 95% CI[0.524, 0.900]) memories than diagnoses-free people. The size of these effects did not differ between diagnostic groups. There were no consistent moderators; effect sizes were not explained by methodological factors such as cue valence, or demographic variables such as participants’ age. There was also no support for the contribution of underlying processes that are thought to be involved in specific/general memory retrieval (e.g., rumination). Our findings confirm that deficits in autobiographical memory retrieval are a transdiagnostic factor associated with a broad range of psychiatric problems, but future research should explore novel causal mechanisms such as encoding deficits and the social processes involved in memory sharing and rehearsal.


2011 ◽  
Vol 9 (1-2) ◽  
pp. 58-69
Author(s):  
Marlene Kim

Asian Americans and Pacific Islanders (AAPIs) in the United States face problems of discrimination, the glass ceiling, and very high long-term unemployment rates. As a diverse population, although some Asian Americans are more successful than average, others, like those from Southeast Asia and Native Hawaiians and Pacific Islanders (NHPIs), work in low-paying jobs and suffer from high poverty rates, high unemployment rates, and low earnings. Collecting more detailed and additional data from employers, oversampling AAPIs in current data sets, making administrative data available to researchers, providing more resources for research on AAPIs, and enforcing nondiscrimination laws and affirmative action mandates would assist this population.


Author(s):  
Mohammad B. Azzam ◽  
Ronald A. Easteal

AbstractClearly, memory and learning are essential to medical education. To make memory and learning more robust and long-term, educators should turn to the advances in neuroscience and cognitive science to direct their efforts. This paper describes the memory pathways and stages with emphasis leading to long-term memory storage. Particular stress is placed on this storage as a construct known as schema. Leading from this background, several pedagogical strategies are described: cognitive load, dual encoding, spiral syllabus, bridging and chunking, sleep consolidation, and retrieval practice.


2021 ◽  
pp. 105477382110381
Author(s):  
Kelly Haskard-Zolnierek ◽  
Courtney Wilson ◽  
Julia Pruin ◽  
Rebecca Deason ◽  
Krista Howard

Individuals with hypothyroidism suffer from symptoms including impairments to cognition (i.e., “brain fog”). Medication can help reduce symptoms of hypothyroidism; however, brain fog may hinder adherence. The aim of this study was to determine if memory impairment and cognitive failures are related to treatment nonadherence in 441 individuals with hypothyroidism. Participants with a diagnosis of hypothyroidism and currently prescribed a thyroid hormone replacement medication were placed in two groups according to adherence level and compared on validated scales assessing impairments to memory and cognition. Results indicated a significant association between treatment nonadherence and self-reported brain fog, represented by greater cognitive and memory impairments. Nonadherent individuals indicated impairments with prospective, retrospective, and short- and long-term memory; and more cognitive failures, compared to adherent individuals. Findings suggest the importance of interventions to enhance adherence for individuals with brain fog, such as encouraging the use of reminders.


Nanoscale ◽  
2021 ◽  
Author(s):  
Srijan Acharya ◽  
Satyam Suwas ◽  
Kaushik Chatterjee

Metallic materials are widely used to prepare implants for both short-term and long-term use in the human body. The performance of these implants is greatly influenced by their surface characteristics,...


Sign in / Sign up

Export Citation Format

Share Document