scholarly journals Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya

Archaea ◽  
2002 ◽  
Vol 1 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Anna Kloda ◽  
Boris Martinac

The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.

2020 ◽  
Vol 118 (3) ◽  
pp. 586a
Author(s):  
Ekaterina Zaitseva ◽  
Srujan Dondapati ◽  
Jeffrey Schloßhauer ◽  
Anne Zemella ◽  
Priyavathi Dhandapani ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (27) ◽  
pp. 16285-16296
Author(s):  
Priyavathi Dhandapani ◽  
Srujan Kumar Dondapati ◽  
Anne Zemella ◽  
Dennis Bräuer ◽  
Doreen Anja Wüstenhagen ◽  
...  

Carboxylesterase, the key enzyme to handle ester-based dyes, is synthesized in microsomes using eukaryotic cell-free protein synthesis platform and established as a viable calcium imaging tool to analyze native and cell-free synthesized ion channels.


Nature ◽  
2018 ◽  
Vol 555 (7696) ◽  
pp. 397-401 ◽  
Author(s):  
Nate Yoder ◽  
Craig Yoshioka ◽  
Eric Gouaux

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Hannah A Ledford ◽  
Seojin Park ◽  
Duncan Muir ◽  
Wen Smith ◽  
Ryan L Woltz ◽  
...  

Background: Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca 2+ -dependent ion channels. Mutations in CALM1, CALM2, and CALM3 have recently been linked to cardiac arrhythmias, such as Long QT Syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and familial idiopathic ventricular fibrillation (IVF). Small-conductance Ca 2+ - activated K + channels (SK) are voltage-independent channels that are regulated solely from beat-to-beat changes in intracellular calcium. CaM regulates the function of multiple ion channels, including SK channels, although the effect of CaM mutations on these channels is not yet understood. We hypothesize that human CaM mutations linked to sudden cardiac death disrupt SK channel function by distinct mechanisms. Methods and Results: We tested the effects of LQTS (CaM D96V , CaM D130G ), CPVT (CaM N54I , CaM N98S ), and IVF (CaM F90L ) CaM mutants compared to CaM WT on SK channel function. Using whole-cell voltage-clamp recordings, we found that CaM D96V and CaM D130G mutants significantly inhibited apamin-sensitive currents. Similarly, action potential studies in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) also revealed significant knockdown of apamin-sensitive currents. Immunofluorescent confocal microscopy confirmed that this effect was not due to changes in SK channel trafficking. Rather, co-immunoprecipitation studies showed a significant decrease in the association of these CaM mutants with the SK channel. Rosetta molecular modeling was used to identify a conformational change in CaM F90L structure compared to that of CaM WT . Conclusions: We found that CaM D96V and CaM D130G mutants significantly reduced apamin-sensitive currents, through a dominant negative effect on SK channel function. Consistent with our hypothesis, CaM F90L resulted in the least inhibitory effects. The data suggests that specific mutations with phenylalanine to leucine (CaM F90L ) may disrupt the interaction between apo-CaM with CaMBD on the SK2 channel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Minako Hirano ◽  
Masahisa Tomita ◽  
Chikako Takahashi ◽  
Nobuyuki Kawashima ◽  
Toru Ide

AbstractArtificial lipid bilayer single-channel recording technique has been employed to determine the biophysical and pharmacological properties of various ion channels. However, its measurement efficiency is very low, as it requires two time-consuming processes: preparation of lipid bilayer membranes and incorporation of ion channels into the membranes. In order to address these problems, we previously developed a technique based on hydrophilically modified gold probes on which are immobilized ion channels that can be promptly incorporated into the bilayer membrane at the same time as the membrane is formed on the probes’ hydrophilic area. Here, we improved further this technique by optimizing the gold probe and developed an automated channel current measurement system. We found that use of probes with rounded tips enhanced the efficiency of channel current measurements, and introducing a hydrophobic area on the probe surface, beside the hydrophilic one, further increased measurement efficiency by boosting membrane stability. Moreover, we developed an automated measurement system using the optimized probes; it enabled us to automatically measure channel currents and analyze the effects of a blocker on channel activity. Our study will contribute to the development of high-throughput devices to identify drug candidates affecting ion channel activity.


2009 ◽  
Vol 134 (2) ◽  
pp. 129-136 ◽  
Author(s):  
László Csanády

Rate-equilibrium free energy relationship (REFER) analysis provides information on transition-state structures and has been applied to reveal the temporal sequence in which the different regions of an ion channel protein move during a closed–open conformational transition. To date, the theory used to interpret REFER relationships has been developed only for equilibrium mechanisms. Gating of most ion channels is an equilibrium process, but recently several ion channels have been identified to have retained nonequilibrium traits in their gating cycles, inherited from transporter-like ancestors. So far it has not been examined to what extent REFER analysis is applicable to such systems. By deriving the REFER relationships for a simple nonequilibrium mechanism, this paper addresses whether an equilibrium mechanism can be distinguished from a nonequilibrium one by the characteristics of their REFER plots, and whether information on the transition-state structures can be obtained from REFER plots for gating mechanisms that are known to be nonequilibrium cycles. The results show that REFER plots do not carry information on the equilibrium nature of the underlying gating mechanism. Both equilibrium and nonequilibrium mechanisms can result in linear or nonlinear REFER plots, and complementarity of REFER slopes for opening and closing transitions is a trivial feature true for any mechanism. Additionally, REFER analysis provides limited information about the transition-state structures for gating schemes that are known to be nonequilibrium cycles.


Sign in / Sign up

Export Citation Format

Share Document