Abstract 17319: Distinct Effects of Human Calmodulinopathy on the Function of Small Conductance Ca 2+ -Activated K + (SK) Channels

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Hannah A Ledford ◽  
Seojin Park ◽  
Duncan Muir ◽  
Wen Smith ◽  
Ryan L Woltz ◽  
...  

Background: Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca 2+ -dependent ion channels. Mutations in CALM1, CALM2, and CALM3 have recently been linked to cardiac arrhythmias, such as Long QT Syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and familial idiopathic ventricular fibrillation (IVF). Small-conductance Ca 2+ - activated K + channels (SK) are voltage-independent channels that are regulated solely from beat-to-beat changes in intracellular calcium. CaM regulates the function of multiple ion channels, including SK channels, although the effect of CaM mutations on these channels is not yet understood. We hypothesize that human CaM mutations linked to sudden cardiac death disrupt SK channel function by distinct mechanisms. Methods and Results: We tested the effects of LQTS (CaM D96V , CaM D130G ), CPVT (CaM N54I , CaM N98S ), and IVF (CaM F90L ) CaM mutants compared to CaM WT on SK channel function. Using whole-cell voltage-clamp recordings, we found that CaM D96V and CaM D130G mutants significantly inhibited apamin-sensitive currents. Similarly, action potential studies in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) also revealed significant knockdown of apamin-sensitive currents. Immunofluorescent confocal microscopy confirmed that this effect was not due to changes in SK channel trafficking. Rather, co-immunoprecipitation studies showed a significant decrease in the association of these CaM mutants with the SK channel. Rosetta molecular modeling was used to identify a conformational change in CaM F90L structure compared to that of CaM WT . Conclusions: We found that CaM D96V and CaM D130G mutants significantly reduced apamin-sensitive currents, through a dominant negative effect on SK channel function. Consistent with our hypothesis, CaM F90L resulted in the least inhibitory effects. The data suggests that specific mutations with phenylalanine to leucine (CaM F90L ) may disrupt the interaction between apo-CaM with CaMBD on the SK2 channel.

2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Hannah A. Ledford ◽  
Seojin Park ◽  
Duncan Muir ◽  
Ryan L. Woltz ◽  
Lu Ren ◽  
...  

Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.


2021 ◽  
Vol 473 (3) ◽  
pp. 477-489 ◽  
Author(s):  
Xiao-Dong Zhang ◽  
Phung N. Thai ◽  
Deborah K. Lieu ◽  
Nipavan Chiamvimonvat

AbstractSmall-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Xue-Xin Fan ◽  
Zihao Liu ◽  
Hua Yu ◽  
Xinyi Huang ◽  
Chen Song ◽  
...  

Although it is well known that ion channels conduct ions across biomembranes, whether ions are conducted by some non-membrane proteins is not known because of the lack of a detection method. Calsequestrin-2 (CSQ2) is a sarcoplasmic reticulum (SR) Ca2+-binding protein suppling Ca2+ for the ryanodine receptor Ca2+ release during the excitation–contraction coupling in cardiomyocytes. CSQ2 mutations, even in some heterozygous occasions, causes catecholaminergic polymorphic ventricular tachycardia (CPVT2), suggesting that CSQ2 may function beyond a Ca2+ buffer. Here, we identify a non-transmembrane channel in Ca2+-enriched CSQ2 dimers, which facilitates fast Ca2+ mobilization. Using crystallography, we solved the high-resolution structure of Ca2+-bound CSQ2 and discovered that the negatively charged residues at the dimer interface encompassed a tubular channel-like structure, dubbed “tunnel,” in which ∼15 Ca2+ ions aligned across the ∼5 nm tunnel path. To determine the potential tunnel conductance, we developed a graphene-based nanoelectronic technology to connect a CSQ2 dimer into a nanocircuit. In the Tyrode solution containing 1 mM Ca2+, a CSQ2 dimer exhibited a conductance one order of magnitude higher than the background level. This conductance was Ca2+ dependent, and was largely suppressed by the single-residue mutation D309N at the bottleneck region of the tunnel path, indicating that the tunnel conducted Ca2+ fluxes. When the D309N mutant CSQ2 was expressed in wild-type rat cardiomyocytes by adenoviral vectors, isoproterenol treatment induced chaotic Ca2+ waves, delayed after-depolarizations and trigged activities resembling those occurring in CPVT2 models. This dominant negative effect of CSQ2 mutation agreed well with our structural observation that CSQ2 tunnels were interconnected to form a tunnel network. Taken together, these results revealed that CSQ2 builds a nano-highway network for energy-efficient Ca2+ mobilization in the SR. Factors that block the Ca2+ highway may lead to arrhythmogenesis.


2020 ◽  
Vol 21 (18) ◽  
pp. 6925
Author(s):  
Meha Kabra ◽  
Bikash Ranjan Pattnaik

Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.


2009 ◽  
Vol 134 (4) ◽  
pp. 281-293 ◽  
Author(s):  
Weiyan Li ◽  
David B. Halling ◽  
Amelia W. Hall ◽  
Richard W. Aldrich

Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca2+ via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca2+ and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca2+-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca2+. These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca2+-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca2+ affinity than WT CaM.


2010 ◽  
Vol 104 (3) ◽  
pp. 1726-1735 ◽  
Author(s):  
Kjartan F. Herrik ◽  
Palle Christophersen ◽  
Paul D. Shepard

Dopamine (DA) neurons are autonomous pacemakers that occasionally fire bursts of action potentials, discharge patterns thought to reflect tonic and phasic DA signaling, respectively. Pacemaker activity depends on the concerted and cyclic interplay between intrinsic ion channels with small conductance Ca2+-activated K+ (SK) channels playing an important role. Bursting activity is synaptically initiated but neither the transmitters nor the specific ion conductances involved have been definitively identified. Physiological and pharmacological regulation of SK channel Ca2+ sensitivity has recently been demonstrated and could represent a powerful means of modulating the expression of tonic/phasic signaling in DA neurons in vivo. To test this premise, we characterized the effects of intravenous administration of the novel positive and negative SK channel modulators NS309 and NS8593, respectively, on the spontaneous activity of substantia nigra pars compacta DA neurons in anesthetized C57BL/6 mice. NS309, dose-dependently decreased DA cell firing rate, increased the proportion of regular firing cells, and eventually stopped spontaneous firing. By contrast, systemic administration of the negative SK channel modulator NS8593 increased firing rate and shifted the pattern toward increased irregularity/bursting; an effect similar to local application of the pore blocking peptide apamin. The altered firing patterns resulting from inhibiting SK currents persisted independently of changes in firing rates induced by administration of DA autoreceptor agonists/antagonists. We conclude that pharmacological modulation of SK channel Ca2+-sensitivity represents a powerful mechanism for switching DA neuron firing activity between tonic and phasic signaling modalities in vivo.


Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3598-3604 ◽  
Author(s):  
Xinhuai Liu ◽  
Allan E. Herbison

The cellular mechanisms determining the firing patterns of GnRH neurons are presently under intense investigation. In this study, we used GnRH-green fluorescent protein transgenic mice and perforated-patch electrophysiology to examine the role of small conductance calcium-activated potassium (SK) channels in determining the electrical excitability and burst-firing characteristics of adult GnRH neurons. After establishing an appropriate protocol for examining the afterhyperpolarization potential (AHP) currents in GnRH neurons, the highly selective SK channel blocker apamin was used to demonstrate that all GnRH neurons express functional SK channels (35.7 ± 2.7 pA, mean decay time constant = 2167 msec, apamin IC50 = 9.6 nm) and that this channel underlies approximately 90% of the AHP in these cells. Current-clamp experiments showed that apamin-sensitive SK channels were tonically active in the majority (74%) of GnRH neurons, with apamin (100 nm) administration resulting in a mean 6.9 ± 0.5 mV membrane depolarization. Apamin also elevated the firing rate of GnRH neurons, including increased burst frequency and duration in spontaneously bursting cells as well as the ability of GnRH neurons to fire action potentials in response to current injection. In GnRH neurons activated by current injection, apamin significantly enhanced the amplitude of the afterdepolarization potential after a single action potential and eliminated spike frequency adaptation. Together, these studies show that apamin-sensitive SK channels play a key role in restraining GnRH neuron excitability. Through direct modulation of the AHP and indirect actions on the afterdepolarization potential, the SK channel exerts a powerful tonic influence upon the firing dynamics of GnRH neurons.


2007 ◽  
Vol 292 (2) ◽  
pp. C832-C840 ◽  
Author(s):  
Amber Brown ◽  
Trudy Cornwell ◽  
Iryna Korniyenko ◽  
Viktoriya Solodushko ◽  
Chris T. Bond ◽  
...  

Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca2+-activated K+ (SK) channel, SK3, promotes feedback regulation of myometrial Ca2+ and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3T/T), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3T/T+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3T/T mice and lower in SK3T/T+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3T/T, SK3T/T+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3T/T mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3T/T mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca2+ channels and disrupting the development of concerted phasic contractile events.


2003 ◽  
Vol 14 (8) ◽  
pp. 3400-3413 ◽  
Author(s):  
Christopher J.R. Loewen ◽  
Orson L. Moritz ◽  
Beatrice M. Tam ◽  
David S. Papermaster ◽  
Robert S. Molday

Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Yamamoto ◽  
T Makiyama ◽  
Y Wuriyanghai ◽  
H Kohjitani ◽  
J Gao ◽  
...  

Abstract Background Calmodulin (CaM) is a ubiquitous Ca2+ sensor molecule encoded by three distinct calmodulin genes, CALM1–3, and has an important role for cardiac ion channel function. Recently, heterozygous missense mutations in CALM genes were reported to cause a new category of life-threatening genetic arrhythmias such as long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT), which is called as “calmodulinopathy”. The patients with calmodulinopathy show poor prognosis and there is no effective treatment for them. Purpose Considering the dominant-negative effect of mutant calmodulin proteins produced by heterozygous missense mutations in CALMs, we aimed to prove the concept of antisense-based therapy to treat calmodulinopathy using human iPS cell-derived cardiomyocyte (hiPSC-CM) model. Methods We designed multiple locked nucleic acid (LNA) gapmer-antisense oligonucleotides (ASOs) targeting CALM2 and analyzed the silencing efficiency and toxicity in cultured cells to select the most potent ASO. Using CMs differentiated from hiPSCs which were generated form a 12-year-old boy with LQTS carrying a heterozygous CALM2-N98S mutation, CALM2 expression and action potentials (APs) were analyzed to evaluate the efficacy of ASOs. Results We identified several ASOs which reduced CALM2 expression without affecting cell viability in human cultured cells (HepG2) (ASO 50 nM, n=2; Figure 1A). Considering further experiments in vivo mouse model, we investigated the CALM2 silencing activity in mouse cultured cells (3T3-L1) without transfection (free-uptake) (ASO 1 μM, n=2; †ASOs have homologous sequence between human and mouse; Figure B). After free-uptake CALM2 silencing analysis in 3T3-L1 cells, we identified that ASO #2 has the most potent CALM2 silencing activity and low cytotoxicity (Figure 1B). ASO #2 effectively reduced CALM2 expression even in hiPSC-CMs (ASO(−): n=3, lipofection: n=4, free-uptake: n=3; P<0.05; Figure 1C). In action potential recordings, we demonstrated that ASO #2 ameliorated prolonged AP durations (APD90) in N98S-hiPSC-CMs at 0.5 Hz pacing (ASO(−): 666±123 ms (n=7), lipofection: 329±21 ms (n=8), free-uptake: 388±34 ms (n=12); P<0.05; Figure 1D). Conclusion Our results using patient-derived hiPSC-CM model suggest that ASO-based therapy might be a promising strategy for the treatment of calmodulinopathy. Figure 1 Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Nissan Chemical Corporation


Sign in / Sign up

Export Citation Format

Share Document