scholarly journals Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm

2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Pablo Martinez ◽  
Hovagim Bakardjian ◽  
Andrzej Cichocki

We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI). The developed system allows a BCI user to navigate a small car (or any other object) on the computer screen in real time, in any of the four directions, and to stop it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which allow an extension to a substantially higher number of commands in the near future.

2018 ◽  
Vol 10 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Saad Abdullah ◽  
◽  
Muhammad A. Khan ◽  
Mauro Serpelloni ◽  
Emilio Sardini ◽  
...  

Author(s):  
Hewawasam Puwakpitiyage C. A. ◽  
Paramesura Rao V. R. ◽  
Muhammad Azizi M. S. A. ◽  
Tee W. J. ◽  
Murugesan R. K. ◽  
...  

<p class="Abstract">Hallway testing, Remote Usability testing, Expert review, Automated expert review and A/B testing are the methods commonly used for Usability testing. However, there is no reliable system that integrates Brain Computer Interface (BCI) into the testing process with focus given towards user emotion analysis using electroencephalography (EEG) signals. This paper proposes a system that would be able to identify user emotions while they are conducting usability tests and the results would be able to increase the accuracy of the usability test. In the proposed system the results of the usability test would be displayed in real time on a dashboard and a summary report can be generated for distribution.</p>


Author(s):  
Hewawasam Puwakpitiyage Chamode Anjana ◽  
Paramesura Rao Vegnish Rao ◽  
Muhammad Azizi Muhammad Syahir Amali bin ◽  
Tee Wee Jing ◽  
Murugesan Raja Kumar ◽  
...  

<strong>Hallway testing, Remote Usability testing, Expert review, Automated expert review and A/B testing are the methods commonly used for Usability testing. However, there is no reliable system that integrates Brain Computer Interface (BCI) into the testing process with focus given towards user emotion analysis using electroencephalography (EEG) signals. This paper proposes a system that would be able to identify user emotions while they are conducting usability tests and the results would be able to increase the accuracy of the usability test. In the proposed system the results of the usability test would be displayed in real time on a dashboard and a summary report can be generated for distribution. </strong>


2019 ◽  
Vol 292 ◽  
pp. 01033
Author(s):  
Zuzana Koudelkova ◽  
Sarka Dankova ◽  
Michal Filip ◽  
Marcela Dabrovska

Brain-Computer Interface (BCI) is an interface connecting the human neural system and computer. This article explains the fundamental principles of BCI and devices, which can be controlled using electroencephalography (EEG). Firstly, this article describes Brain-Computer interface according to obtaining brain activity. After that, the applications of BCI are proposed, which can be used in clinical practice. In the experimental part, the external systems are defined. These external systems are operated by BCI technology. This technology is developed at the Department of Informatics and Artificial Intelligence of the Faculty of Applied Informatics, Tomas Bata University in Zlin. This BCI system contains EEG technology, which is responsible for scanning a brain activity with a fourteen-channel device developed by Emotiv company. In the near future, this design of peripheral systems can be involved in clinical practice in various medical branches, especially physiotherapy.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Mamunur Rashid ◽  
Bifta Sama Bari ◽  
Norizam Sulaiman ◽  
Mahfuzah Mustafa ◽  
Md Jahid Hasan ◽  
...  

AbstractThe patients who are impaired with neurodegenerative disorders cannot command their muscles through the neural pathways. These patients are given an alternative from their neural path through Brain-Computer Interface (BCI) systems, which are the explicit use of brain impulses without any need for a computer's vocal muscle. Nowadays, the steady-state visual evoked potential (SSVEP) modality offers a robust communication pathway to introduce a non-invasive BCI. There are some crucial constituents, including window length of SSVEP response, the number of electrodes in the acquisition device and system accuracy, which are the critical performance components in any BCI system based on SSVEP signal. In this study, a real-time hybrid BCI system consists of SSVEP and EMG has been proposed for the environmental control system. The feature in terms of the common spatial pattern (CSP) has been extracted from four classes of SSVEP response, and extracted feature has been classified using K-nearest neighbors (k-NN) based classification algorithm. The obtained classification accuracy of eight participants was 97.41%. Finally, a control mechanism that aims to apply for the environmental control system has also been developed. The proposed system can identify 18 commands (i.e., 16 control commands using SSVEP and two commands using EMG). This result represents very encouraging performance to handle real-time SSVEP based BCI system consists of a small number of electrodes. The proposed framework can offer a convenient user interface and a reliable control method for realistic BCI technology.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1613
Author(s):  
Man Li ◽  
Feng Li ◽  
Jiahui Pan ◽  
Dengyong Zhang ◽  
Suna Zhao ◽  
...  

In addition to helping develop products that aid the disabled, brain–computer interface (BCI) technology can also become a modality of entertainment for all people. However, most BCI games cannot be widely promoted due to the poor control performance or because they easily cause fatigue. In this paper, we propose a P300 brain–computer-interface game (MindGomoku) to explore a feasible and natural way to play games by using electroencephalogram (EEG) signals in a practical environment. The novelty of this research is reflected in integrating the characteristics of game rules and the BCI system when designing BCI games and paradigms. Moreover, a simplified Bayesian convolutional neural network (SBCNN) algorithm is introduced to achieve high accuracy on limited training samples. To prove the reliability of the proposed algorithm and system control, 10 subjects were selected to participate in two online control experiments. The experimental results showed that all subjects successfully completed the game control with an average accuracy of 90.7% and played the MindGomoku an average of more than 11 min. These findings fully demonstrate the stability and effectiveness of the proposed system. This BCI system not only provides a form of entertainment for users, particularly the disabled, but also provides more possibilities for games.


2007 ◽  
Vol 2007 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Kauhanen ◽  
Pasi Jylänki ◽  
Janne Lehtonen ◽  
Pekka Rantanen ◽  
Hannu Alaranta ◽  
...  

Movement-disabled persons typically require a long practice time to learn how to use a brain-computer interface (BCI). Our aim was to develop a BCI which tetraplegic subjects could control only in 30 minutes. Six such subjects (level of injury C4-C5) operated a 6-channel EEG BCI. The task was to move a circle from the centre of the computer screen to its right or left side by attempting visually triggered right- or left-hand movements. During the training periods, the classifier was adapted to the user's EEG activity after each movement attempt in a supervised manner. Feedback of the performance was given immediately after starting the BCI use. Within the time limit, three subjects learned to control the BCI. We believe that fast initial learning is an important factor that increases motivation and willingness to use BCIs. We have previously tested a similar single-trial classification approach in healthy subjects. Our new results show that methods developed and tested with healthy subjects do not necessarily work as well as with motor-disabled patients. Therefore, it is important to use motor-disabled persons as subjects in BCI development.


2013 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Alessandro Luiz Stamatto Ferreira ◽  
Leonardo Cunha de Miranda ◽  
Erica Esteves Cunha de Miranda ◽  
Sarah Gomes Sakamoto

Brain-Computer Interface (BCI) enables users to interact with a computer only through their brain biological signals, without the need to use muscles. BCI is an emerging research area but it is still relatively immature. However, it is important to reflect on the different aspects of the Human-Computer Interaction (HCI) area related to BCIs, considering that BCIs will be part of interactive systems in the near future. BCIs most attend not only to handicapped users, but also healthy ones, improving interaction for end-users. Virtual Reality (VR) is also an important part of interactive systems, and combined with BCI could greatly enhance user interactions, improving the user experience by using brain signals as input with immersive environments as output. This paper addresses only noninvasive BCIs, since this kind of capture is the only one to not present risk to human health. As contributions of this work we highlight the survey of interactive systems based on BCIs focusing on HCI and VR applications, and a discussion on challenges and future of this subject matter.


Sign in / Sign up

Export Citation Format

Share Document