scholarly journals Film Thickness Analysis for EHL Contacts under Steady-State and Transient Conditions by Automatic Digital Image Processing

2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
E. Ciulli ◽  
T. Draexl ◽  
K. Stadler

The knowledge of the film thickness values is very important in lubricated contacts to verify the lubrication conditions. Optical interferometry is one of the most used methodologies for film thickness and shape determination of Elastohydrodynamic-lubricated contacts. An image processing programme has been developed for the analysis of white light interferograms. The programme, based on the analysis of the hue channel, has been developed in order to process big amounts of images, as often generated under transient conditions. The measurement range is currently limited to a maximum film thickness of 0.7 m. The programme has been used for analysing several images recorded in tests carried out with a ball on disc contact under steady-state as well as transient conditions for different velocities and slide-to-roll ratios. Under transient conditions, the entraining velocity is varied with a sinusoidal law for two different frequencies. The results obtained evidenced an asymmetric reduction of the film thickness when increasing the percentage of sliding, both for stationary and transient conditions. Under transient conditions with increasing test frequency, film thickness loops of increasing amplitude have been found that reduce their amplitude more when the ball is running faster than the disc. Squeeze and thermal effects can explain the results obtained.

2001 ◽  
Vol 30 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Eiji Katamine ◽  
Hideyuki Azegami ◽  
Masami Kojima

Robotica ◽  
2005 ◽  
Vol 23 (5) ◽  
pp. 645-651 ◽  
Author(s):  
M. W. Hannan ◽  
I.D. Walker

This paper describes external camera-based shape estimation for continuum robots. Continuum robots have a continuous backbone made of sections which bend to produce changes of configuration. A major difficulty with continuum robots is the determination of the robot's shape, as there are no discrete joints. This paper presents a method for shape determination based on machine vision. Using an engineered environment and image processing from a high speed camera, shape determination of a continuum robot is achieved. Experimental results showing the effectiveness of the technique on our Elephant's Trunk Manipulator are presented.


Author(s):  
B. Roy Frieden

Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.


Author(s):  
Stuart McKernan

For many years the concept of quantitative diffraction contrast experiments might have consisted of the determination of dislocation Burgers vectors using a g.b = 0 criterion from several different 2-beam images. Since the advent of the personal computer revolution, the available computing power for performing image-processing and image-simulation calculations is enormous and ubiquitous. Several programs now exist to perform simulations of diffraction contrast images using various approximations. The most common approximations are the use of only 2-beams or a single systematic row to calculate the image contrast, or calculating the image using a column approximation. The increasing amount of literature showing comparisons of experimental and simulated images shows that it is possible to obtain very close agreement between the two images; although the choice of parameters used, and the assumptions made, in performing the calculation must be properly dealt with. The simulation of the images of defects in materials has, in many cases, therefore become a tractable problem.


Clean Air ◽  
2007 ◽  
Vol 8 (4) ◽  
pp. 359-371
Author(s):  
A. Medeiros ◽  
R. Edenhofer ◽  
K. Lucka ◽  
H. Kohne

1989 ◽  
Vol 20 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Gunnar Jacks ◽  
Göran Åberg ◽  
P. Joseph Hamilton

Strontium isotopes in precipitation, soil and runoff water can be used to establish a ratio of wet plus dry deposited Sr to Sr released by weathering. This ratio is especially enhanced in areas with old acid Proterozoic rocks (0.6-2.5 Ga) and Archean rocks (>2.5 Ga). Since Sr and Ca behave in an analogous way in the coniferous forest ecosystem the results for Sr can be used for the determination of Ca. If the deposition of calcium can be calculated reasonably accurately the weathering rate can also be estimated. Five catchments have been investigated using this approach. Three of them seem to be close to a steady state, wherein the losses and gains of calcium to the system are equal. In the two southern-most catchments there seems to be an ongoing loss of exchangeable calcium. The loss by runoff occurs with sulphate being the dominant anion. Weathering rates of 1.5 to 4.8 kg Ca/ha year have been estimated.


Sign in / Sign up

Export Citation Format

Share Document