Real-time shape estimation for continuum robots using vision

Robotica ◽  
2005 ◽  
Vol 23 (5) ◽  
pp. 645-651 ◽  
Author(s):  
M. W. Hannan ◽  
I.D. Walker

This paper describes external camera-based shape estimation for continuum robots. Continuum robots have a continuous backbone made of sections which bend to produce changes of configuration. A major difficulty with continuum robots is the determination of the robot's shape, as there are no discrete joints. This paper presents a method for shape determination based on machine vision. Using an engineered environment and image processing from a high speed camera, shape determination of a continuum robot is achieved. Experimental results showing the effectiveness of the technique on our Elephant's Trunk Manipulator are presented.

Author(s):  
Frank Liebold ◽  
Ali A. Heravi ◽  
Oliver Mosig ◽  
Manfred Curbach ◽  
Viktor Mechtcherine ◽  
...  

The determination of crack propagation velocities can provide valuable information for a better understanding of damage processes of concrete. The spatio-temporal analysis of crack patterns developing at a speed of several hundred meters per second is a rather challenging task. In the paper, a photogrammetric procedure for the determination of crack propagation velocities in concrete specimens using high-speed camera image sequences is presented. A cascaded image sequence processing which starts with the computation of displacement vector fields for a dense pattern of points on the specimen’s surface between consecutive time steps of the image sequence chain has been developed. These surface points are triangulated into a mesh, and as representations of cracks, discontinuities in the displacement vector fields are found by a deformation analysis applied to all triangles of the mesh. Connected components of the deformed triangles are computed using region-growing techniques. Then, the crack tips are determined using principal component analysis. The tips are tracked in the image sequence and the velocities between the time stamps of the images are derived. A major advantage of this method as compared to established techniques is in the fact of its allowing for spatio-temporally resolved, full-field measurements rather than point-wise measurements and that information on crack width can be obtained simultaneously. To validate the experimentation, the authors processed image sequences of tests on four compact-tension specimens performed on a split-Hopkinson tension bar. The images were taken by a high-speed camera at a frame rate of 160,000 images per second. By applying to these datasets the image sequence processing procedure as developed, crack propagation velocities of about 800 m/s were determined with a precision in the order of 50 m/s.


2016 ◽  
Vol 292 ◽  
pp. 78-81
Author(s):  
Grzegorz Bogiel ◽  
◽  
Krzysztof Ćwik ◽  

12 calibre guns and ammunition can be subjected to forensic examination, often there is a need to determine the distance a shot was fired. The article presented a new way to carry out such studies and focused on visualization and the determination of parameters forming a fired, shot cluster. The examination uses a high-speed camera and software for the analysis of the recorded films. As a result of the research dimensions and speed of the creation of a cluster of fired shot were achieved.


2012 ◽  
Vol 160 ◽  
pp. 77-81
Author(s):  
Jing Jing Tian ◽  
Lei Han

Kick-up phenomenon during looping is an important factor in thermosonic wire bonding. In this study, the loping process during wire bonding was recorded by using high-speed camera, and wire profiles evolution was obtained from images sequence by image processing method. With a polynomial fitting, the wire loop profiling was described by the curvature changing, and kick-up phenomenon on gold wire was found between the instant of 290th frame(0.0537s) to 380th frame (0.0703s), the change of curvature is divided into three phases, a looping phase, a mutation phase and a kick-up phase. While in the kick-up phase, the kick up phenomenon is the most obvious. These experimental results were useful for in-depth study of kick-up phenomenon by simulation.


2016 ◽  
Vol 28 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Patrik Zima ◽  
Tomáš Fürst ◽  
Milan SedláŘ ◽  
Martin Komárek ◽  
Rostislav Huzlík

2012 ◽  
Vol 455-456 ◽  
pp. 1140-1144
Author(s):  
Zhi Guo Luo ◽  
Li Hao Han ◽  
Xiao Lei ◽  
Zhan Xia Di ◽  
Jun Jie Sun

In this paper, a two-dimensional hot model of melter gasifier, in which paraffin and corn are used to simulate DRI, coke and lump coal respectively, has been established to study the regional boundary in this paper. While the whole experimental process is recorded by the high-speed camera, the image processing method is put forward to define each regional boundary. By means of this method, the boundary of raceway, cohesive zone can be obtained quantificationally.


2021 ◽  
Vol 29 (1(145)) ◽  
pp. 35-39
Author(s):  
Volkan Kaplan

Warp tensions were measured while a machine was operating on a woven cotton fabric with three different woven patterns. This study was carried out with image analysis methods using a high speed camera. Three weave pattern types: plain, twill and satin were woven on the same weaving machine, and thus it could be understood how weave pattern differences affect warp tension. Each of these three weaves was woven in three weft densities: 20, 28 and 45 wefts per cm. These fabrics were able to be made on a weaving machine with an automatic dobby. It was aimed to investigate warp tension differences for three basic weave patterns while keeping all machine settings constant. The weave settings of the dobby were changed for plain, twill and satin weaves. Warp tension calculation was based on the warp elasticity theory. Warp elasticises were measured by image processing methods in MATLAB using a high-speed camera. It was aimed to improve upon the new method of warp extension measurement of fabric when the loom is in operation. It was observed that the warp tension in plain fabric was higher than for twill and satin under the same conditions.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4415
Author(s):  
Frank Liebold ◽  
Ali A. Heravi ◽  
Oliver Mosig ◽  
Manfred Curbach ◽  
Viktor Mechtcherine ◽  
...  

The determination of crack propagation velocities can provide valuable information for a better understanding of damage processes of concrete. The spatio-temporal analysis of crack patterns developing at a speed of several hundred meters per second is a rather challenging task. In the paper, a photogrammetric procedure for the determination of crack propagation velocities in concrete specimens using high-speed camera image sequences is presented. A cascaded image sequence processing which starts with the computation of displacement vector fields for a dense pattern of points on the specimen’s surface between consecutive time steps of the image sequence chain has been developed. These surface points are triangulated into a mesh, and as representations of cracks, discontinuities in the displacement vector fields are found by a deformation analysis applied to all triangles of the mesh. Connected components of the deformed triangles are computed using region-growing techniques. Then, the crack tips are determined using the principal component analysis. The tips are tracked in the image sequence and the velocities between the time stamps of the images are derived. A major advantage of this method as compared to the established techniques is in the fact that it allows spatio-temporally resolved, full-field measurements rather than point-wise measurements. Furthermore, information on the crack width can be obtained simultaneously. To validate the experimentation, the authors processed image sequences of tests on four compact-tension specimens performed on a split-Hopkinson tension bar. The images were taken by a high-speed camera at a frame rate of 160,000 images per second. By applying the developed image sequence processing procedure to these datasets, crack propagation velocities of about 800 m/s were determined with a precision in the order of 50 m/s.


Sign in / Sign up

Export Citation Format

Share Document