scholarly journals Synonymous Codon Usage Analysis of Thirty Two Mycobacteriophage Genomes

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Sameer Hassan ◽  
Vasantha Mahalingam ◽  
Vanaja Kumar

Synonymous codon usage of protein coding genes of thirty two completely sequenced mycobacteriophage genomes was studied using multivariate statistical analysis. One of the major factors influencing codon usage is identified to be compositional bias. Codons ending with either C or G are preferred in highly expressed genes among which C ending codons are highly preferred over G ending codons. A strong negative correlation between effective number of codons (Nc) and GC3s content was also observed, showing that the codon usage was effected by gene nucleotide composition. Translational selection is also identified to play a role in shaping the codon usage operative at the level of translational accuracy. High level of heterogeneity is seen among and between the genomes. Length of genes is also identified to influence the codon usage in 11 out of 32 phage genomes. Mycobacteriophage Cooper is identified to be the highly biased genome with better translation efficiency comparing well with the host specific tRNA genes.

2020 ◽  
Author(s):  
Mark G. Sterken ◽  
Ruud H.P. Wilbers ◽  
Pjotr Prins ◽  
Basten L. Snoek ◽  
George M. Giambasu ◽  
...  

ABSTRACTThe redundancy of the genetic code allows for a regulatory layer to optimize protein synthesis by modulating translation and degradation of mRNAs. Patterns in synonymous codon usage in highly expressed genes have been studied in many species, but scarcely in conjunction with mRNA secondary structure. Here, we analyzed over 2,000 expression profiles covering a range of strains, treatments, and developmental stages of five model species (Escherichia coli, Arabidopsis thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans, and Mus musculus). By comparative analyses of genes constitutively expressed at high and low levels, we revealed a conserved shift in codon usage and predicted mRNA secondary structures. Highly abundant transcripts and proteins, as well as high protein per transcript ratios, were consistently associated with less variable and shorter stretches of weak mRNA secondary structures (loops). Genome-wide recoding showed that codons with the highest relative increase in highly expressed genes, often C-ending and not necessarily the most frequent, enhanced formation of uniform loop sizes. Our results point at a general selective force contributing to the optimal expression of abundant proteins as less variable secondary structures promote regular ribosome trafficking with less detrimental collisions, thereby leading to an increase in mRNA stability and a higher translation efficiency.


Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 1191-1199
Author(s):  
Araxi O Urrutia ◽  
Laurence D Hurst

Abstract In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 897-907 ◽  
Author(s):  
M Bulmer

Abstract It is argued that the bias in synonymous codon usage observed in unicellular organisms is due to a balance between the forces of selection and mutation in a finite population, with greater bias in highly expressed genes reflecting stronger selection for efficiency of translation. A population genetic model is developed taking into account population size and selective differences between synonymous codons. A biochemical model is then developed to predict the magnitude of selective differences between synonymous codons in unicellular organisms in which growth rate (or possibly growth yield) can be equated with fitness. Selection can arise from differences in either the speed or the accuracy of translation. A model for the effect of speed of translation on fitness is considered in detail, a similar model for accuracy more briefly. The model is successful in predicting a difference in the degree of bias at the beginning than in the rest of the gene under some circumstances, as observed in Escherichia coli, but grossly overestimates the amount of bias expected. Possible reasons for this discrepancy are discussed.


2020 ◽  
Vol 48 (19) ◽  
pp. 11030-11039
Author(s):  
Matthew W Hodgman ◽  
Justin B Miller ◽  
Taylor E Meurs ◽  
John S K Kauwe

Abstract Synonymous codon usage significantly impacts translational and transcriptional efficiency, gene expression, the secondary structure of both mRNA and proteins, and has been implicated in various diseases. However, population-specific differences in codon usage biases remain largely unexplored. Here, we present a web server, https://cubap.byu.edu, to facilitate analyses of codon usage biases across populations (CUBAP). Using the 1000 Genomes Project, we calculated and visually depict population-specific differences in codon frequencies, codon aversion, identical codon pairing, co-tRNA codon pairing, ramp sequences, and nucleotide composition in 17,634 genes. We found that codon pairing significantly differs between populations in 35.8% of genes, allowing us to successfully predict the place of origin for African and East Asian individuals with 98.8% and 100% accuracy, respectively. We also used CUBAP to identify a significant bias toward decreased CTG pairing in the immunity related GTPase M (IRGM) gene in East Asian and African populations, which may contribute to the decreased association of rs10065172 with Crohn's disease in those populations. CUBAP facilitates in-depth gene-specific and codon-specific visualization that will aid in analyzing candidate genes identified in genome-wide association studies, identifying functional implications of synonymous variants, predicting population-specific impacts of synonymous variants and categorizing genetic biases unique to certain populations.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Fanny Pouyet ◽  
Dominique Mouchiroud ◽  
Laurent Duret ◽  
Marie Sémon

Synonymous codon usage (SCU) varies widely among human genes. In particular, genes involved in different functional categories display a distinct codon usage, which was interpreted as evidence that SCU is adaptively constrained to optimize translation efficiency in distinct cellular states. We demonstrate here that SCU is not driven by constraints on tRNA abundance, but by large-scale variation in GC-content, caused by meiotic recombination, via the non-adaptive process of GC-biased gene conversion (gBGC). Expression in meiotic cells is associated with a strong decrease in recombination within genes. Differences in SCU among functional categories reflect differences in levels of meiotic transcription, which is linked to variation in recombination and therefore in gBGC. Overall, the gBGC model explains 70% of the variance in SCU among genes. We argue that the strong heterogeneity of SCU induced by gBGC in mammalian genomes precludes any optimization of the tRNA pool to the demand in codon usage.


Author(s):  
Yicong Li ◽  
Rui Wang ◽  
Huihui Wang ◽  
Feiyang Pu ◽  
Xili Feng ◽  
...  

Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.


DNA Research ◽  
2019 ◽  
Vol 26 (6) ◽  
pp. 473-484
Author(s):  
Carrie A Whittle ◽  
Arpita Kulkarni ◽  
Cassandra G Extavour

Abstract Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.


2021 ◽  
Author(s):  
Puttatida Mahapattanakul ◽  
Pragun Rajbhandari ◽  
Patsarin Rodpothong

Abstract Codon usage is a reflection of evolutionary adaptation to environmental pressure. The pattern of usage may be unique to species of viruses, genomes of the same species or genes within the same genome. Here we have analysed the overall nucleotide composition and the nucleotides at different codon positions in the genomes of 6 Alphabaculoviruses. Principle Component Analysis (PCA) based on Relative Synonymous Codon Usage (RSCU) of all Open Reading Frames (ORFs) was employed to investigate the pattern of the codon usage. The results suggest the Alphabaculovirus genomes, except that of Agrotis Ipsilon mNPV (AgipNPV), are predominantly under an influence of a neutral mutation that bias toward A/T. The majority of the ORFs, except those of the AgipNPV, cluster at the same location in the 2-dimensional PCA map with one prominent outlier that has been identified as a P6.9 gene. The six Alpha-baculovirus P6.9 genes have a high G/C content, dissimilar to the majority of the ORFs. The G/C content is found to be significantly high at the 2 nd codon position, suggesting the influence of natural selection and perhaps reflecting its functional conservation in DNA packaging as well as its evolutionary relation to Protamine.


Sign in / Sign up

Export Citation Format

Share Document