scholarly journals Design of a Child Localization System on RFID and Wireless Sensor Networks

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Chao Chen

Radio Frequency Identification (RFID) and wireless sensor networks are wireless technologies that rapidly emerge and show great potential. Combining RFID and wireless sensor networks provides a cost-efficient way to expand the RFID system's range and to enable an RFID system in areas without a network infrastructure. These two technologies are employed to build a wireless localization system in a children's theme park. The main purpose of this child localization system is to track and locate children within a certain range near some landmarks in the park. The design experience in this project can be exported to other applications such as object tracking and surveillance.

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 865 ◽  
Author(s):  
Mohammed H. Alsharif ◽  
Sunghwan Kim ◽  
Nuri Kuruoğlu

In the near future, symmetry technologies for the Internet of Things (IoT), along with symmetry and asymmetry applications for IoT security and privacy, will re-design the socio-ecological human terrain morphology. The IoT ecosystem deploys diverse sensor platforms connecting billions of heterogeneous objects through the Internet. Most sensors are low-energy consuming devices which are designed to transmit sporadically or continuously. However, when we consider the billions/trillions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology cannot be overemphasised, specifically the development of EE solutions for sustainable IoT technology. Propelled by this need, EE proposals are expected to address IoT’s EE issues. Consequently, many developments have been displayed, and highlighting them to provide clear insights into eco-sustainable and green IoT technologies is becoming a crucial task. To pursue a clear vision of green IoT, this article aims to describe the current state-of-the art insights into energy-saving practices and strategies on green IoT. The major contribution of this study is the review and discussion of the substantial issues enabling hardware green IoT to focus on green wireless sensor networks and green radio-frequency identification. This review paper will contribute significantly to the future implementation of green and eco-sustainable IoT.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


Sign in / Sign up

Export Citation Format

Share Document