scholarly journals Epidermal Growth Factor (EGF) Treatment on Multipotential Stromal Cells (MSCs). Possible Enhancement of Therapeutic Potential of MSC

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Kenichi Tamama ◽  
Haruhisa Kawasaki ◽  
Alan Wells

Adult bone marrow multipotential stromal cells (MSCs) hold great promise in regenerative medicine and tissue engineering. However, due to their low numbers upon harvesting, MSCs need to be expanded in vitro without biasing future differentiation for optimal utility. In this concept paper, we focus on the potential use of epidermal growth factor (EGF), prototypal growth factor for enhancing the harvesting and/or differentiation of MSCs. Soluble EGF was shown to augment MSC proliferation while preserving early progenitors within MSC population, and thus did not induce differentiation. However, tethered form of EGF was shown to promote osteogenic differentiation. Soluble EGF was also shown to increase paracrine secretions including VEGF and HGF from MSC. Thus, soluble EGF can be used not only to expand MSC in vitro, but also to enhance paracrine secretion through drug-releasing MSC-encapsulated scaffolds in vivo. Tethered EGF can also be utilized to direct MSC towards osteogenic lineage both in vitro and in vivo.

2019 ◽  
Vol 112 (3) ◽  
pp. 266-277 ◽  
Author(s):  
Nikhil S Chari ◽  
Cristina Ivan ◽  
Xiandong Le ◽  
Jinzhong Li ◽  
Ainiwaer Mijiti ◽  
...  

Abstract Background Alterations in the epidermal growth factor receptor and PI3K pathways in head and neck squamous cell carcinomas (HNSCCs) are frequent events that promote tumor progression. Ectopic expression of the epidermal growth factor receptor–targeting microRNA (miR), miR-27a* (miR-27a-5p), inhibits tumor growth. We sought to identify mechanisms mediating repression of miR-27a* in HNSCC, which have not been previously identified. Methods We quantified miR-27a* in 47 oral cavity squamous cell carcinoma patient samples along with analysis of miR-27a* in 73 oropharyngeal and 66 human papillomavirus–positive (HPV+) samples from The Cancer Genome Atlas. In vivo and in vitro TP53 models engineered to express mutant TP53, along with promoter analysis using chromatin immunoprecipitation and luciferase assays, were used to identify the role of TP53 and TP63 in miR-27a* transcription. An HNSCC cell line engineered to conditionally express miR-27a* was used in vitro to determine effects of miR-27a* on target genes and tumor cells. Results miR-27a* expression was repressed in 47 oral cavity tumor samples vs matched normal tissue (mean log2 difference = −0.023, 95% confidence interval = −0.044 to −0.002; two-sided paired t test, P = .03), and low miR-27a* levels were associated with poor survival in HPV+ and oropharyngeal HNSCC samples. Binding of ΔNp63α to the promoter led to an upregulation of miR-27a*. In vitro and in vivo findings showed that mutant TP53 represses the miR-27a* promoter, downregulating miR-27a* levels. ΔNp63α and nucleoporin 62, a protein involved in ΔNP63α transport, were validated as novel targets of miR-27a*. Conclusion Our results characterize a negative feedback loop between TP63 and miR-27a*. Genetic alterations in TP53, a frequent event in HNSCC, disrupt this regulatory loop by repressing miR-27a* expression, promoting tumor survival.


2008 ◽  
Vol 180 (6) ◽  
pp. 1205-1218 ◽  
Author(s):  
Ingrid Roxrud ◽  
Camilla Raiborg ◽  
Nina Marie Pedersen ◽  
Espen Stang ◽  
Harald Stenmark

Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor–regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.


1993 ◽  
Vol 264 (5) ◽  
pp. E800-E803 ◽  
Author(s):  
G. Serrero ◽  
N. M. Lepak ◽  
J. Hayashi ◽  
S. P. Goodrich

Epidermal growth factor (EGF) is a potent inhibitor of adipose differentiation in vitro and delays adipose tissue development in vivo. Here we show that in the homozygous male obese mice the level of EGF in the submaxillary gland and plasma is significantly lower than in the glands and plasma of age-matched control littermates. This EGF deficiency in ob/ob mice was observed as early as 5 wk of age when obesity had just become apparent and was also found in adult mice. The level of prepro-EGF mRNA expression in the submaxillary gland was also lower in obese mice than in control littermates. However, the level of kidney prepro-EGF mRNA was the same in mice with both phenotypes, suggesting that the regulation of prepro-EGF mRNA expression is different in both tissues. These results indicate that genetic obesity in mice is accompanied by a decrease in the production of EGF.


Sign in / Sign up

Export Citation Format

Share Document