scholarly journals Near-Field/Far-Field Transformation with Helicoidal Scanning from Irregularly Spaced Data

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

A fast and accurate technique for the compensation of the probe positioning errors in the near-field/far-field transformation with helicoidal scanning is proposed in this paper. It relies on a nonredundant sampling representation using a spherical modelling of the antenna under test and employs an iterative scheme to evaluate the near-field data at the points fixed by the helicoidal nonredundant representation from the acquired irregularly distributed ones. Once these helicoidal data have been recovered, those required by a classical cylindrical near-field/far-field transformation are efficiently determined by using an optimal sampling interpolation algorithm. Some numerical tests assessing the effectiveness of the proposed approach and its stability with respect to random errors affecting the near-field data are shown.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

A direct near-field-far-field transformation with helicoidal scanning is developed. It is based on the nonredundant sampling representation of electromagnetic fields and uses a spherical antenna modelling to determine the number of helix turns. Moreover, the number of voltage samples on each of them is fixed by the maximum transverse dimension of the antenna, both to simplify the mechanical scanning and to reduce the computational effort. This technique allows the evaluation of the antenna far field directly from a minimum set of near-field data without interpolating them. Although the number of near-field data employed by the developed technique is slightly increased with respect to that required by rigorously applying the nonredundant sampling representation on the helix, it is still remarkably smaller than that needed by the standard near-field-far-field transformation with cylindrical scanning. The effectiveness of the technique is assessed by numerical and experimental results.


2017 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

2019 ◽  
Vol 13 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Background: The development of fast Near-Field (NF) measurement techniques allowing the precise determination of the Far-Field (FF) radiation features of an antenna is becoming more and more challenging nowadays. Objective: The goal of the article is the development of an NF To FF Transformation (NFTFFT) with spherical scan for offset mounted volumetric Antennas Under Tests (AUTs) requiring, unlike the classical technique, a reduced set of NF data, that is of the same amount as for the onset mounting case, thus making data gathering faster. In fact, the number of NF data needed by the standard approach may considerably increase in this case, since the size of the smallest sphere surrounding the AUT and centered at the center of the measurement sphere rises. Methods: This goal has been achieved by profitably exploiting the non-redundant sampling representation of electromagnetic field and assuming a volumetric AUT as contained in a sphere. An optimal sampling interpolation algorithm is then employed to precisely reconstruct the input NF data for the traditional spherical NFTFFT from the reduced set of the collected ones. Conclusion: The numerical simulations and experimental tests demonstrate the effectiveness of the developed approach accounting for an offset mounting of the AUT.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1644
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi ◽  
...  

An efficient near-to-far-field transformation (NTFFT) technique, wherein the near-field (NF) measurements are acquired along a planar spiral with a uniform step to make the control of the involved positioners easier, is developed in this article. Such a technique is tailored for quasi-spherical, i.e., volumetric, antennas under test and makes use of a reduced number of NF data. An effective two-dimensional sampling interpolation algorithm, allowing the accurate reconstruction of the input NF data for the standard NTFFT with plane-rectangular scan, is obtained by setting the spiral step equal to the sample spacing required for interpolating along a radial line according to the spatial bandlimitation properties of electromagnetic fields, and by properly developing a non-redundant representation along such a spiral. Tests results are reported to demonstrate that the proposed NTFFT technique retains the same accuracy as the standard plane-rectangular one.


2010 ◽  
Vol 8 ◽  
pp. 43-48 ◽  
Author(s):  
C. H. Schmidt ◽  
S. F. Razavi ◽  
T. F. Eibert ◽  
Y. Rahmat-Samii

Abstract. The characterisation of antenna radiation patterns by measurements in the near-field and a following near-field far-field transformation require accurate amplitude and phase data. Especially at higher frequencies phase measurements are demanding in terms of instrumentation and measurement accuracy. Phaseless techniques which require amplitude only data on one or more measurement surfaces are therefore of special interest. In this paper a phaseless spherical algorithm based on spherical modal expansion is presented. The algorithm works with amplitude only near-field data measured on two spheres of different radii and is therefore not restricted to certain types of antennas as for planar measurements for example. Simulated as well as measured results of low and medium gain antennas are shown.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Two efficient probe-compensated near-field-far-field transformations with spherical scanning for antennas having two dimensions very different from the third one are here developed. They rely on the nonredundant sampling representations of the electromagnetic fields and on the optimal sampling interpolation expansions, and use effective antenna modellings. In particular, an antenna with a predominant dimension is no longer considered as enclosed in a sphere but in a cylinder ended in two half spheres, whereas a surface formed by two circular “bowls” with the same aperture diameter but different lateral bends is adopted to shape an antenna with two predominant dimensions. These modellings are able to fit very well a lot of antennas by properly setting their geometric parameters. It is so possible to remarkably lower the number of data to be acquired, thus significantly reducing the measurement time. Numerical tests assessing the accuracy and the robustness of the techniques are reported.


2017 ◽  
Vol 11 (1) ◽  
pp. 141-153
Author(s):  
Renato Cicchetti ◽  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
...  

Background: This paper provides the experimental validation of an efficient iterative procedure to correct known position errors in a spherical near to far-field (NTFF) transformation for elongated antennas which uses a minimum number of NF measurements. Method: This transformation exploits a non-redundant sampling representation of the voltage detected by the probe obtained by shaping a long antenna with a prolate ellipsoid. The uniform samples, those at the points set by the representation, are accurately reconstructed from the acquired not regularly distributed (non-uniform) ones by using an iterative scheme, which requires a one to one relationship between each uniform sampling point and the corresponding non-uniform one. Then a 2-D optimal sampling formula is adopted to evaluate the input data needed to perform the traditional spherical NTFF transformation from the retrieved non-redundant uniform samples. Conclusion: Finally, laboratory proofs have been reported to demonstrate the validity of the presented technique from a practical viewpoint.


2013 ◽  
Vol 7 (1) ◽  
pp. 21-30 ◽  
Author(s):  
F. D'Agostino ◽  
F. Ferrara ◽  
C. Gennarelli ◽  
R. Guerriero ◽  
M. Migliozzi

A near-field to far-field transformation technique with helicoidal scanning for elongated antennas, which allows the evaluation of the antenna far-field pattern in any cut plane directly from a nonredundant number of near-field data without interpolating them, is developed in this paper. It is based on the nonredundant sampling representations of electromagnetic fields and employs a flexible source modelling suitable for long antennas to determine the number of helix turns. The number of near-field measurements on each turn is on the contrary dictated by the minimum cylinder rule, as in the classical cylindrical scanning, in order to reduce the computational burden and to simplify the scanning from the mechanical viewpoint. Some numerical and experimental results assessing the effectiveness of the proposed technique are reported.


Sign in / Sign up

Export Citation Format

Share Document