scholarly journals Multipulse Chaotic Dynamics for a Laminated Composite Piezoelectric Plate

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
J. H. Zhang ◽  
W. Zhang

We investigate the global bifurcations and multipulse chaotic dynamics of a simply supported laminated composite piezoelectric rectangular thin plate under combined parametric and transverse excitations. We analyze directly the nonautonomous governing equations of motion for the laminated composite piezoelectric rectangular thin plate. The results obtained here indicate that the multipulse chaotic motions can occur in the laminated composite piezoelectric rectangular thin plate. Numerical simulations including the phase portraits and Lyapunov exponents are used to analyze the complex nonlinear dynamic behaviors of the laminated composite piezoelectric rectangular thin plate.

Author(s):  
Wei Zhang ◽  
Jun-Hua Zhang ◽  
Ming-Hui Yao

The multi-pulse Shilnikov orbits and chaotic dynamics for a parametrically excited, simply supported rectangular buckled thin plate are studied by using the extended Melnikov method. Based on von Karman type equation and the Galerkin’s approach, two-degree-of-freedom nonlinear system is obtained for the rectangular thin plate. The extended Melnikov method is directly applied to the non-autonomous governing equations of the thin plate. The results obtained here show that the multipulse chaotic motions can occur in the thin plate.


Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Xiang-Ying Guo ◽  
Dong-Xing Cao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the extended Melnikov method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Author(s):  
Wei Zhang ◽  
Jun-Hua Zhang

The global bifurcations and multi-pulse chaotic dynamics of a simply supported laminated composite piezoelectric rectangular thin plate under combined parametric and transverse excitations are investigated in this paper for the first time. The formulas of the laminated composite piezoelectric rectangular plate are derived by using the von Karman-type equation, the Reddy’s third-order shear deformation plate theory and the Galerkin’s approach. The extended Melnikov method is improved to enable us to analyze directly the non-autonomous nonlinear dynamical system, which is applied to the non-autonomous governing equations of motion for the laminated composite piezoelectric rectangular thin plate. The results obtained here indicate that the multi-pulse chaotic motions can occur in the laminated composite piezoelectric rectangular thin plate. Numerical simulation is also employed to find the multi-pulse chaotic motions of the laminated composite piezoelectric rectangular thin plate.


2006 ◽  
Vol 16 (02) ◽  
pp. 325-347 ◽  
Author(s):  
WEI ZHANG ◽  
CHUNZHI SONG ◽  
MIN YE

In this paper, the nonlinear oscillations and chaotic dynamics of a parametrically excited simply supported symmetric cross-ply laminated composite rectangular thin plate are further investigated. Considering geometric nonlinearity and nonlinear damping, a two-degree-of-freedom nonlinear system under parametric excitation is obtained to give the nonlinear governing equations of motion for laminated composite plate subjected to in-plane load. The method of multiple scales is utilized to obtain the averaged equations that are numerically solved to obtain the steady bifurcation responses and analysis of stability for laminated composite thin plate. It is illustrated that under certain conditions laminated composite thin plate may have the multiple steady bifurcation solutions and jumping may occur. The chaotic motion of rectangular symmetric cross-ply laminated composite thin plate is also found by using numerical simulation. It is found that the occurrence of the periodic, quasi-periodic and chaotic motions for a parametrically excited four-edges simply supported rectangular symmetric cross-ply laminated composite thin plate depends on the parametric excitation.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang

This paper investigates the multipulse global bifurcations and chaotic dynamics for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate by using an energy phase method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1 : 2 internal resonance and primary parametric resonance. The energy phase method is used for the first time to investigate the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The paper demonstrates how to employ the energy phase method to analyze the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate, the Shilnikov type multipulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.


Author(s):  
Wei Zhang ◽  
Xiang-Ying Guo ◽  
Qian Wang ◽  
Cui-Cui Liu ◽  
Yun-cheng He

This paper focuses on the analysis on a new kind of nonlinear resonant motion with the low-frequency large-amplitude, which can be induced by the high-frequency small-amplitude mode through the mechanism of modulation of amplitude and phase. The system investigated is a simply supported symmetric cross-ply composite laminated rectangular thin plate subjected to parametric excitations. Experimental research has been carried out for the first time. The test plate was excited near the first natural frequency with parametric forces and the above mentioned high-to-low frequency mode has been observed, whose frequency is extremely lower than the first natural frequency. Theoretical job goes to analysis the above phenomenon accordingly. Based on the Reddy’s third-order shear deformation plate theory and the von Karman type equation, the nonlinear governing equations of the simply supported symmetric cross-ply composite laminated rectangular thin plate subjected to parametric excitations are formulated. The Galerkin method is utilized to discretize the governing partial differential equations into a two-degree-of-freedom nonlinear system. Numerical simulation is conducted to investigate this non-autonomous system subsequently. The results of numerical simulation demonstrate that there is a qualitative agreement between the experimental observation and the theoretical result. Besides, the multi-pulse chaotic motions are also reported in numerical simulations.


Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Dong-Xing Cao

The multi-pulse orbits and chaotic dynamics of the simply supported laminated composite piezoelectric rectangular plates under combined parametric excitation and transverse loads are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motions for the laminated composite piezoelectric rectangular plates are derived from von Karman-type equation and third-order shear deformation laminate theory of Reddy. The four-dimensional averaged equation under the case of primary parametric resonance and 1:2 internal resonances is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plates. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plates. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plates are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plates.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang ◽  
D. M. Wang

This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.


Sign in / Sign up

Export Citation Format

Share Document