scholarly journals Planetary Satellite Orbiters: Applications for the Moon

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Jean Paulo dos Santos Carvalho ◽  
Rodolpho Vilhena de Moraes ◽  
Antônio Fernando Bertachini de Almeida Prado

Low-altitude, near-polar orbits are very desirable as science orbits for missions to planetary satellites, such as the Earth's Moon. In this paper, we present an analytical theory with numerical simulations to study the orbital motion of lunar low-altitude artificial satellite. We consider the problem of an artificial satellite perturbed by the nonuniform distribution of the mass of the Moon (J2–J5,J7, andC22). The conditions to get frozen orbits are presented. Using an approach that considers the single-averaged problem, we found families of periodic orbits for the problem of an orbiter travelling around the Moon, where frozen orbits valid for long periods of time are found. A comparison between the models for the zonal and tesseral harmonics coefficients is presented.

2012 ◽  
Vol 22 (10) ◽  
pp. 1250240 ◽  
Author(s):  
J. P. S. CARVALHO ◽  
D. C. MOURÃO ◽  
A. ELIPE ◽  
R. VILHENA DE MORAES ◽  
A. F. B. A. PRADO

Low-altitude, near-polar orbits are very desirable for scientific missions to study the natural satellites of the planets of the Solar System, such as Europa, that is one of the natural satellites of Jupiter. The problem is analyzed considering that an artificial satellite is orbiting Europa and that this spacecraft is perturbed by the nonuniform distribution of mass of the planetary satellite (J2, J3, C22) and by the gravitational attraction of the third-body. We present an analytical theory using the averaged model and applications were done by performing numerical integrations of the analytical equations developed. Using the averaged method, several frozen orbits were obtained. Some of them has low inclination, low altitude and long lifetime. Numerical simulations are performed using the software Mercury, to compare the results obtained using the analytical theory.


2009 ◽  
Vol 2009 ◽  
pp. 1-24 ◽  
Author(s):  
Jean Paulo dos Santos Carvalho ◽  
Rodolpho Vilhena de Moraes ◽  
Antônio Fernando Bertachini de Almeida Prado

Herein, we consider the problem of a lunar artificial satellite perturbed by the nonuniform distribution of mass of the Moon taking into account the oblateness (J2) and the equatorial ellipticity (sectorial termC22). Using Lie-Hori method up to the second order short-period terms of the Hamiltonian are eliminated. A study is done for the critical inclination in first and second order of the disturbing potential. Coupling terms due to the nonuniform distribution of mass of the Moon are analyzed. Numerical simulations are presented with the disturbing potential of first and second order is. It an approach for the behavior of the longitude of the ascending node of a near Sun-synchronous polar lunar orbit is presented.


2003 ◽  
Vol 1 ◽  
pp. 95-101
Author(s):  
F. Deleflie ◽  
P. Exertier ◽  
P. Berio ◽  
G. Metris ◽  
O. Laurain ◽  
...  

Abstract. The present study consists in studying the mean orbital motion of the CHAMP satellite, through a single long arc on a period of time of 200 days in 2001. We actually investigate the sensibility of its mean motion to its accelerometric data, as measures of the surface forces, over that period. In order to accurately determine the mean motion of CHAMP, we use “observed" mean orbital elements computed, by filtering, from 1-day GPS orbits. On the other hand, we use a semi-analytical model to compute the arc. It consists in numerically integrating the effects of the mean potentials (due to the Earth and the Moon and Sun), and the effects of mean surfaces forces acting on the satellite. These later are, in case of CHAMP, provided by an averaging of the Gauss system of equations. Results of the fit of the long arc give a relative sensibility of about 10-3, although our gravitational mean model is not well suited to describe very low altitude orbits. This technique, which is purely dynamical, enables us to control the decreasing of the trajectory altitude, as a possibility to validate accelerometric data on a long term basis.Key words. Mean orbital motion, accelerometric data


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Martin Lara ◽  
Jesús F. Palacián

Frozen orbits of the Hill problem are determined in the double-averaged problem, where short and long-period terms are removed by means of Lie transforms. Due to the perturbation method we use, the initial conditions of corresponding quasi-periodic solutions in the nonaveraged problem are computed straightforwardly. Moreover, the method provides the explicit equations of the transformation that connects the averaged and nonaveraged models. A fourth-order analytical theory is necessary for the accurate computation of quasi-periodic frozen orbits.


2014 ◽  
Vol 25 (Issue 1-B) ◽  
pp. 15-20
Author(s):  
A. Awad Mervat ◽  
Mahmoud M.K. ◽  
Habib T.M.A. ◽  
Mohamed A.H.

2011 ◽  
Vol 02 (07) ◽  
pp. 801-807 ◽  
Author(s):  
Yehia A. Abdel-Aziz ◽  
Afaf M. Abdel-Hameed ◽  
Khalil I. Khalil

1997 ◽  
Vol 165 ◽  
pp. 295-300
Author(s):  
P. Bretagnon

AbstractWe present the results of a solution of the Earth’s rotation built with analytical solutions of the planets and of the Moon’s motion. We take into account the influence of the Moon, the Sun and all the planets on the potential of the Earth for the zonal harmonics Cj,0 for j from 2 to 5, and also for the tesseral harmonics C2,2, S2,2C3,k, S3,k for k from 1 to 3 and C4,1, S4,1. We determine three Euler angles ψ, ω, and φ by calculating the components of the torque of the external forces with respect to the geocenter in the case of the rigid Earth. The analytical solution of the precession-nutation has been compared to a numerical integration over the time span 1900–2050. The differences do not exceed 16 μas for ψ and 8 μas for ω whereas the contribution of the tesseral harmonics reaches 150 μas in the time domain.


Sign in / Sign up

Export Citation Format

Share Document