families of periodic orbits
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sahar H. Younis ◽  
M. N. Ismail ◽  
Ghada F. Mohamdien ◽  
A. H. Ibrahiem

In this paper, under the effects of the largest primary radiation pressure, the elliptic restricted four-body problem is formulated in Hamiltonian form. Moreover, the canonical equations are obtained which are considered as the equations of motion. The Lagrangian points within the frame of the elliptic restricted four-body problem are obtained. The true anomalies are considered as independent variables. An analytical and numerical approach had been used. A code of Mathematica version 12 is constructed to truncate these considerations and is applied on the Earth-Moon-Sun system. In addition, the stability and periodicity of the motion about the equilibrium points are studied by using the Poincare maps. The motion about the collinear point L2 is presented as an example for the obtained results, and some families of periodic orbits are presented.


2021 ◽  
Vol 398 ◽  
pp. 125961
Author(s):  
Abimael Bengochea ◽  
Antonio Hernández-Garduño ◽  
Ernesto Pérez-Chavela

Meccanica ◽  
2021 ◽  
Author(s):  
Giorgio Gobat ◽  
Louis Guillot ◽  
Attilio Frangi ◽  
Bruno Cochelin ◽  
Cyril Touzé

AbstractQuasi-periodic solutions can arise in assemblies of nonlinear oscillators as a consequence of Neimark-Sacker bifurcations. In this work, the appearance of Neimark-Sacker bifurcations is investigated analytically and numerically in the specific case of a system of two coupled oscillators featuring a 1:2 internal resonance. More specifically, the locus of Neimark-Sacker points is analytically derived and its evolution with respect to the system parameters is highlighted. The backbone curves, solution of the conservative system, are first investigated, showing in particular the existence of two families of periodic orbits, denoted as parabolic modes. The behaviour of these modes, when the detuning between the eigenfrequencies of the system is varied, is underlined. The non-vanishing limit value, at the origin of one solution family, allows explaining the appearance of isolated solutions for the damped-forced system. The results are then applied to a Micro-Electro-Mechanical System-like shallow arch structure, to show how the analytical expression of the Neimark-Sacker boundary curve can be used for rapid prediction of the appearance of quasiperiodic regime, and thus frequency combs, in Micro-Electro-Mechanical System dynamics.


2021 ◽  
Author(s):  
Shijun LIAO ◽  
Xiaoming Li ◽  
Yu Yang

Abstract The famous three-body problem can be traced back to Newton in 1687, but quite few families of periodic orbits were found in 300 years thereafter. In this paper, we propose an effective approach and a roadmap to numerically gain planar periodic orbits of three-body systems with arbitrary masses by means of machine learning based on an artificial neural network (ANN) model. Given any a known periodic orbit as a starting point, this approach can provide more and more periodic orbits (of the same family name) with variable masses, while the mass domain having periodic orbits becomes larger and larger, and the ANN model becomes wiser and wiser. Finally, we have an ANN model trained by means of all obtained periodic orbits of the same family, which provides a convenient way to give accurate enough predictions of periodic orbits with arbitrary masses for physicists and astronomers. It suggests that the high-performance computer and artificial intelligence (including machine learning) should be the key to gain periodic orbits of the famous three-body problem.


Author(s):  
Saúl Pilatowsky-Cameo ◽  
David Villaseñor ◽  
Miguel A Bastarrachea-Magnani ◽  
Sergio Lerma ◽  
Lea F Santos ◽  
...  

2020 ◽  
Vol 18 (01) ◽  
pp. 2150011
Author(s):  
Bhavika M. Patel ◽  
Niraj M. Pathak ◽  
Elbaz I. Abouelmagd

In the frame work of Saturn–Titan system, the resonant orbits of first-order are analyzed for three different families of periodic orbits, namely, interior resonant orbits, exterior resonant orbits and [Formula: see text]-Family orbits. This analysis is developed by considering Saturn as a spherical and oblate body. The initial position, semi-major axis, eccentricity, orbital period and order of resonant orbits of these families are investigated for different values of Jacobi constant and oblateness parameter.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050163
Author(s):  
Jaume Llibre ◽  
Durval José Tonon ◽  
Mariana Queiroz Velter

We characterize the families of periodic orbits of two discontinuous piecewise differential systems in [Formula: see text] separated by a plane using their first integrals. One of these discontinuous piecewise differential systems is formed by linear differential systems, and the other by nonlinear differential systems.


2020 ◽  
Vol 641 ◽  
pp. A169
Author(s):  
R. H. Sanders

In this paper I describe numerical calculations of the motion of particles in a disk about a solar-mass object perturbed by a planet on a circular orbit with mass greater than 0.001 of the stellar mass. A simple algorithm for simulating bulk viscosity is added to the ensemble of particles, and the response of the disk is followed for several planet orbital periods. A two-arm spiral structure forms near the inner resonance (2–1) and extends to the planetary orbit radius (corotation). In the same way for gaseous disks on a galactic scale perturbed by a weak rotating bar-like distortion, this is shown to be related to the appearance of two perpendicular families of periodic orbits near the resonance combined with dissipation which inhibits the crossing of streamlines. Spiral density enhancements result from the crowding of streamlines due to the gradual shift between families. The results, such as the dependence of pitch-angle on radius and the asymmetry of the spiral features, resemble those of sophisticated calculations that include more physical effects. The morphology of structure generated in this way clearly resembles that observed in objects with well-defined two-arm spirals, such as SAO 206462. This illustrates that the process of spiral formation via interaction with planets in such disks can be due to orbital motion in a perturbed Keplerian field combined with kinematic viscosity.


Sign in / Sign up

Export Citation Format

Share Document