scholarly journals Nonstationary Superconductivity: Quantum Dissipation and Time-Dependent Ginzburg-Landau Equation

2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Anatoly A. Barybin

Transport equations of the macroscopic superfluid dynamics are revised on the basis of a combination of the conventional (stationary) Ginzburg-Landau equation and Schrödinger's equation for the macroscopic wave function (often called the order parameter) by using the well-known Madelung-Feynman approach to representation of the quantum-mechanical equations in hydrodynamic form. Such an approach has given (a) three different contributions to the resulting chemical potential for the superfluid component, (b) a general hydrodynamic equation of superfluid motion, (c) the continuity equation for superfluid flow with a relaxation term involving the phenomenological parameters and , (d) a new version of the time-dependent Ginzburg-Landau equation for the modulus of the order parameter which takes into account dissipation effects and reflects the charge conservation property for the superfluid component. The conventional Ginzburg-Landau equation also follows from our continuity equation as a particular case of stationarity. All the results obtained are mutually consistent within the scope of the chosen phenomenological description and, being model-neutral, applicable to both the low- and high- superconductors.

2012 ◽  
Vol 26 (06) ◽  
pp. 1250035 ◽  
Author(s):  
WALTER J. FREEMAN ◽  
ROBERTO LIVI ◽  
MASASHI OBINATA ◽  
GIUSEPPE VITIELLO

The formation of amplitude modulated and phase modulated assemblies of neurons is observed in the brain functional activity. The study of the formation of such structures requires that the analysis has to be organized in hierarchical levels, microscopic, mesoscopic, macroscopic, each with its characteristic space-time scales and the various forms of energy, electric, chemical, thermal produced and used by the brain. In this paper, we discuss the microscopic dynamics underlying the mesoscopic and the macroscopic levels and focus our attention on the thermodynamics of the nonequilibrium phase transitions. We obtain the time-dependent Ginzburg–Landau equation for the nonstationary regime and consider the formation of topologically nontrivial structures such as the vortex solution. The power laws observed in functional activities of the brain is also discussed and related to coherent states characterizing the many-body dissipative model of brain.


Sign in / Sign up

Export Citation Format

Share Document