superfluid component
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2016 ◽  
Vol 18 (24) ◽  
pp. 16414-16422 ◽  
Author(s):  
M. Briant ◽  
E. Mengesha ◽  
P. de Pujo ◽  
M.-A. Gaveau ◽  
B. Soep ◽  
...  

This work examines how the non-superfluid component of helium droplets hosting a C2H2–Ne complex affects the hindered rotation of C2H2 within the complex.


2015 ◽  
Vol 24 (03) ◽  
pp. 1530008 ◽  
Author(s):  
Brynmor Haskell ◽  
Andrew Melatos

Radio pulsars provide us with some of the most stable clocks in the universe. Nevertheless several pulsars exhibit sudden spin-up events, known as glitches. More than forty years after their first discovery, the exact origin of these phenomena is still open to debate. It is generally thought that they are observational manifestation of a superfluid component in the stellar interior and provide an insight into the dynamics of matter at extreme densities. In recent years, there have been several advances on both the theoretical and observational side, that have provided significant steps forward in our understanding of neutron star interior dynamics and possible glitch mechanisms. In this article we review the main glitch models that have been proposed and discuss our understanding, in the light of current observations.


2011 ◽  
Vol 107 (26) ◽  
Author(s):  
H. Lauter ◽  
V. Apaja ◽  
I. Kalinin ◽  
E. Kats ◽  
M. Koza ◽  
...  

Laser Physics ◽  
2011 ◽  
Vol 21 (8) ◽  
pp. 1443-1447 ◽  
Author(s):  
B. Capogrosso-Sansone ◽  
M. Guglielmino ◽  
V. Penna

2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Anatoly A. Barybin

Transport equations of the macroscopic superfluid dynamics are revised on the basis of a combination of the conventional (stationary) Ginzburg-Landau equation and Schrödinger's equation for the macroscopic wave function (often called the order parameter) by using the well-known Madelung-Feynman approach to representation of the quantum-mechanical equations in hydrodynamic form. Such an approach has given (a) three different contributions to the resulting chemical potential for the superfluid component, (b) a general hydrodynamic equation of superfluid motion, (c) the continuity equation for superfluid flow with a relaxation term involving the phenomenological parameters and , (d) a new version of the time-dependent Ginzburg-Landau equation for the modulus of the order parameter which takes into account dissipation effects and reflects the charge conservation property for the superfluid component. The conventional Ginzburg-Landau equation also follows from our continuity equation as a particular case of stationarity. All the results obtained are mutually consistent within the scope of the chosen phenomenological description and, being model-neutral, applicable to both the low- and high- superconductors.


Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1512-1515 ◽  
Author(s):  
H. Choi ◽  
D. Takahashi ◽  
K. Kono ◽  
E. Kim

Supersolidity, the appearance of zero-viscosity flow in solids, was first indicated in helium-4 torsional oscillator (TO) experiments. In this apparatus, the irrotationality of the superfluid component causes it to decouple from the underlying normal solid, leading to a reduction in the resonant period of the TO. However, the resonant period may be altered for reasons other than supersolidity, such as the temperature dependence of the elastic modulus of solid helium. Superimposing rotation onto oscillatory measurements may distinguish between supersolidity and classical effects. We performed such simultaneous measurements of the TO and the shear modulus, and observed substantial change in the resonant period with rotational speed where the modulus remained unchanged. This contrasting behavior suggests that the decrease in the TO period is a result of supersolidity.


2009 ◽  
Vol 23 (12) ◽  
pp. 1603-1610 ◽  
Author(s):  
R. AFZALI ◽  
F. PASHAEE

The spin diffusion coefficient tensor of the A1-phase of superfluid 3 He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component [Formula: see text] is proportional to T-2, and the spin diffusion coefficient of super-fluid component [Formula: see text] is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.


2008 ◽  
Vol 609 ◽  
pp. 221-274 ◽  
Author(s):  
C. PERALTA ◽  
A. MELATOS ◽  
M. GIACOBELLO ◽  
A. OOI

We solve numerically for the first time the two-fluid Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations for an He-II-like superfluid contained in a differentially rotating spherical shell, generalizing previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor–Couette flow. The simulations are conducted for Reynolds numbers in the range 1 × 102≤Re≤3 × 104, rotational shear 0.1≤ΔΩ/Ω≤0.3, and dimensionless gap widths 0.2≤δ≤0.5. The system tends towards a stationary but unsteady state, where the torque oscillates persistently, with amplitude and period determined by δ and ΔΩ/Ω. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies as Re increases, and their shapes become more complex, especially in the superfluid component, with multiple secondary cells arising for Re > 103. The torque exerted by the normal component is approximately three times greater in a superfluid with anisotropic Hall–Vinen (HV) mutual friction than in a classical viscous fluid or a superfluid with isotropic Gorter–Mellink (GM) mutual friction. HV mutual friction also tends to ‘pinch’ meridional circulation cells more than GM mutual friction. The boundary condition on the superfluid component, whether no slip or perfect slip, does not affect the large-scale structure of the flow appreciably, but it does alter the cores of the circulation cells, especially at lower Re. As Re increases, and after initial transients die away, the mutual friction force dominates the vortex tension, and the streamlines of the superfluid and normal fluid components increasingly resemble each other. In non-axisymmetric superfluid SCF, three-dimensional vortex structures are classified according to topological invariants. For misaligned spheres, the flow is focal throughout most of its volume, except for thread-like zones where it is strain-dominated near the equator (inviscid component) and poles (viscous component). A wedge-shaped isosurface of vorticity rotates around the equator at roughly the rotation period. For a freely precessing outer sphere, the flow is equally strain- and vorticity-dominated throughout its volume. Unstable focus/contracting points are slightly more common than stable node/saddle/saddle points in the viscous component, but not in the inviscid component. Isosurfaces of positive and negative vorticity form interlocking poloidal ribbons (viscous component) or toroidal tongues (inviscid component) which attach and detach at roughly the rotation period.


Author(s):  
W.F Vinen

This paper provides a brief introduction to quantum turbulence in simple superfluids, in which the required rotational motion in the superfluid component is due entirely to the topological defects that are identified as quantized vortices. Particular emphasis is placed on the basic dynamical behaviour of the quantized vortices and on turbulent decay mechanisms at a very low temperature. There are possible analogies with the behaviour of cosmic strings.


Sign in / Sign up

Export Citation Format

Share Document