scholarly journals Generalized Projective Synchronization for Different Hyperchaotic Dynamical Systems

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
M. M. El-Dessoky ◽  
E. Saleh

Projective synchronization and generalized projective synchronization have recently been observed in the coupled hyperchaotic systems. In this paper a generalized projective synchronization technique is applied in the hyperchaotic Lorenz system and the hyperchaotic Lü. The sufficient conditions for achieving projective synchronization of two different hyperchaotic systems are derived. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.

2014 ◽  
Vol 568-570 ◽  
pp. 1095-1099
Author(s):  
Si Yan Tao ◽  
Da Lin ◽  
Xiao Hui Zeng

In this paper, the generalized projective synchronization for a general class of hyperchaotic systems is investigated. A systematic, powerful and concrete scheme is developed to investigate the generalized projective synchronization between the drive system and response system based on the feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350113 ◽  
Author(s):  
FUZHONG NIAN ◽  
XINGYUAN WANG

Projective synchronization between two nonlinear systems with different dimension was investigated. The controllers were designed when the dimension of drive system greater than the one of response system. The opposite situation also was discussed. In addition, we found an approach to control the chaotic (hyperchaotic) system to exhibit the behaviors of hyperchaotic (chaotic) system. The numerical simulations were implemented on different chaotic (hyperchaotic) systems, and the results indicate that our methods are effective.


2013 ◽  
Vol 27 (13) ◽  
pp. 1350044
Author(s):  
XING-YUAN WANG ◽  
YU-HONG YANG ◽  
MING-KU FENG

This paper studies the problem of chaos synchronization between two different hyperchaotic systems with uncertain parameters. Based on the Lyapunov stability theory, we obtain the sufficient condition of synchronization between two different hyperchaotic systems with uncertain parameters. A new adaptive controller with parameter update laws is designed to synchronize these chaotic systems. We proved it in theory with an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Rössler system. Numerical results verified the validation of the proposed scheme.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zhouchao Wei

Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.


2012 ◽  
Vol 26 (16) ◽  
pp. 1250121
Author(s):  
XINGYUAN WANG ◽  
LULU WANG ◽  
DA LIN

In this paper, a generalized (lag, anticipated and complete) projective synchronization for a general class of chaotic systems is defined. A systematic, powerful and concrete scheme is developed to investigate the generalized (lag, anticipated and complete) projective synchronization between the drive system and response system based on the adaptive control method and feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes. In addition, the scheme can also be extended to research generalized (lag, anticipated and complete) projective synchronization between nonidentical discrete-time chaotic systems.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 304-313 ◽  
Author(s):  
M. Mossa Al-Sawalha ◽  
Ayman Al-Sawalha

AbstractThe objective of this article is to implement and extend applications of adaptive control to anti-synchronize different fractional order chaotic and hyperchaotic dynamical systems. The sufficient conditions for achieving anti–synchronization are derived by using the Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.


Author(s):  
Fei Yu ◽  
Yun Song

The concept of complete switched generalized function projective synchronization (CSGFPS) in practical type is introduced and the CSGFPS of a class of hyperchaotic systems with unknown parameters and disturbance inputs are investigated. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of a class of hyperchaotic systems asymptotically synchronized up to a desired scaling function and the unknown parameters are also estimated. In numerical simulations, the scaling function factors discussed in this paper are more complicated. Finally, the hyperchaotic Lorenz and hyperchaotic Lü systems are taken, for example, and the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Faezeh Farivar ◽  
Mahdi Aliyari Shoorehdeli ◽  
Mohammad Ali Nekoui ◽  
Mohammad Teshnehlab

This paper proposes the generalized projective synchronization for chaotic heavy symmetric gyroscope systems versus external disturbances via sliding rule-based fuzzy control. Because of the nonlinear terms of the gyroscope, the system exhibits complex and chaotic motions. Based on Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic synchronization are attained. The fuzzy rules are directly constructed subject to a common Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the Lyapunov sense. The proposed method allows us to arbitrarily adjust the desired scaling by controlling the slave system. It is not necessary to calculate the Lyapunov exponents and the Eigen values of the Jacobian matrix. It is a systematic procedure for synchronization of chaotic systems. It can be applied to a variety of chaotic systems no matter whether it contains external excitation or not. It needs only one controller to realize synchronization no matter how much dimensions the chaotic system contains, and the controller is easy to be implemented. The designed controller is robust versus model uncertainty and external disturbances. Numerical simulation results demonstrate the validity and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document