scholarly journals Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zhouchao Wei

Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yan-Ping Wu ◽  
Guo-Dong Wang

The synchronization between fractional-order hyperchaotic systems and integer-order hyperchaotic systems via sliding mode controller is investigated. By designing an active sliding mode controller and choosing proper control parameters, the drive and response systems are synchronized. Synchronization between the fractional-order Chen chaotic system and the integer-order Chen chaotic system and between integer-order hyperchaotic Chen system and fractional-order hyperchaotic Rössler system is used to illustrate the effectiveness of the proposed synchronization approach. Numerical simulations coincide with the theoretical analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350195 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve the generalized synchronization between two different fractional-order chaotic systems. Based on the stability theory of fractional-order systems and the pole placement technique, a controller is designed and theoretical proof is given. Two groups of examples are shown to verify the effectiveness of the proposed scheme, the first one is to realize the generalized synchronization between the fractional-order Chen system and the fractional-order Rössler system, the second one is between the fractional-order Lü system and the fractional-order hyperchaotic Lorenz system. The corresponding numerical simulations verify the effectiveness of the proposed scheme.


2014 ◽  
Vol 568-570 ◽  
pp. 1095-1099
Author(s):  
Si Yan Tao ◽  
Da Lin ◽  
Xiao Hui Zeng

In this paper, the generalized projective synchronization for a general class of hyperchaotic systems is investigated. A systematic, powerful and concrete scheme is developed to investigate the generalized projective synchronization between the drive system and response system based on the feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes.


2012 ◽  
Vol 2012 ◽  
pp. 1-33 ◽  
Author(s):  
Jiacai Huang ◽  
Hongsheng Li ◽  
YangQuan Chen ◽  
Qinghong Xu

A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method.


Sign in / Sign up

Export Citation Format

Share Document