PROJECTIVE SYNCHRONIZATION OF TWO DIFFERENT DIMENSIONAL NONLINEAR SYSTEMS

2013 ◽  
Vol 27 (21) ◽  
pp. 1350113 ◽  
Author(s):  
FUZHONG NIAN ◽  
XINGYUAN WANG

Projective synchronization between two nonlinear systems with different dimension was investigated. The controllers were designed when the dimension of drive system greater than the one of response system. The opposite situation also was discussed. In addition, we found an approach to control the chaotic (hyperchaotic) system to exhibit the behaviors of hyperchaotic (chaotic) system. The numerical simulations were implemented on different chaotic (hyperchaotic) systems, and the results indicate that our methods are effective.

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
M. M. El-Dessoky ◽  
E. Saleh

Projective synchronization and generalized projective synchronization have recently been observed in the coupled hyperchaotic systems. In this paper a generalized projective synchronization technique is applied in the hyperchaotic Lorenz system and the hyperchaotic Lü. The sufficient conditions for achieving projective synchronization of two different hyperchaotic systems are derived. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.


2012 ◽  
Vol 466-467 ◽  
pp. 1261-1265
Author(s):  
Chun Mei Wang ◽  
Ren Long Chang

Based on techniques from the state observer design and the pole placement technique, we present a systematic design procedure to synchronize a modified coupled dynamos system by a scaling factor ( projective synchronization ). Compared with the method proposed by Wen and Xu, this method eliminates the nonlinear item from the output of the drive system. Furthermore, the scaling factor can be adjusted arbitrarily in due course of control without degrading the controllability. Finally, feasibility of the technique is illustrated for the unified chaotic system.


2011 ◽  
Vol 25 (21) ◽  
pp. 2879-2887
Author(s):  
XING-YUAN WANG ◽  
MING-JUN WANG

In this paper, the drive system and the response system can be in a state of linear generalized synchronization via transmitting single signal. By means of a transitional system, the response system is obtained by variable replacement method. Chen system and hyperchaotic Chen system are used as examples in numerical simulations. Simulation results show the effectiveness of the method.


2010 ◽  
Vol 24 (31) ◽  
pp. 6143-6155
Author(s):  
XING-YUAN WANG ◽  
JING ZHANG

In this paper, the linear and nonlinear generalized synchronization of chaotic systems is investigated. Based on the modified state observer method, a new synchronization approach is proposed with more extensive application scope. The proposed synchronization scheme can realize the linear and nonlinear generalized synchronizations of same dimensional or different dimensional chaotic systems. Sufficient conditions of global asymptotic generalized synchronization between the drive system and the response system are gained on the basis of the state observer theory. Numerical simulations further illustrate the effectiveness of the proposed scheme.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350110
Author(s):  
JIAKUN ZHAO ◽  
YING WU

This work is concerned with the general methods for the function projective synchronization (FPS) of chaotic (or hyperchaotic) systems. The aim is to investigate the FPS of different chaotic (hyper-chaotic) systems with unknown parameters. The adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function by Lyapunov stability theory. The general approach for FPS of Chen hyperchaotic system and Lü system is provided. Numerical simulations are also presented to verify the effectiveness of the proposed scheme.


2011 ◽  
Vol 308-310 ◽  
pp. 1688-1694
Author(s):  
Jian Bing Hu ◽  
Jian Xiao ◽  
Ling Dong Zhao ◽  
Qiang Jiang

This work presents a new approach configuring a special matrix to design controller for synchronizing fractional chaotic systems. With this method, fractional chaotic projective synchronization is implemented. Numerical simulations confirm the effectiveness of the approach.


2014 ◽  
Vol 568-570 ◽  
pp. 1095-1099
Author(s):  
Si Yan Tao ◽  
Da Lin ◽  
Xiao Hui Zeng

In this paper, the generalized projective synchronization for a general class of hyperchaotic systems is investigated. A systematic, powerful and concrete scheme is developed to investigate the generalized projective synchronization between the drive system and response system based on the feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wen Tan ◽  
Feng Ling Jiang ◽  
Chuang Xia Huang ◽  
Lan Zhou

A new controller design method is proposed to synchronize the fractional-order hyperchaotic system through the stability theory of fractional calculus; the synchronization between two identical fractional-order Chen hyperchaotic systems is realized by designing only two suitable controllers in the response system. Furthermore, this control scheme can be used in secure communication via the technology of chaotic masking using the complex nonperiodic information as trial message, and the useful information can be recovered at the receiver. Numerical simulations coincide with the theoretical analysis.


2013 ◽  
Vol 631-632 ◽  
pp. 1220-1225 ◽  
Author(s):  
J.W. Fan ◽  
N. Zhao ◽  
Y. Gao ◽  
H.L. Lan

Function synchronization is an important type of chaos synchronization because of enhancing the security of communication. In order to obtain the better conformances of function synchronization, a method of the fractional-order chaotic system is presented, which based on the stability theory of the fractional order system. This method need construct a parameter matrix and a coupled matrix using fractional-order chaotic drive system at first, and then the chaotic response system is set up with these matrixes. The synchronization error function between drive system and response system is satisfied with the asymptotic stability. Function synchronization of the fractional-order Rikitake chaotic system is selected as a typical example. Numerical simulation results demonstrate the validity of the presented method. This method not only has better synchronization conformances, but also can be applied in the chaotic secure communications.


2002 ◽  
Vol 12 (04) ◽  
pp. 835-846 ◽  
Author(s):  
KUANG-YOW LIAN ◽  
PETER LIU ◽  
CHIAN-SONG CHIU ◽  
TUNG-SHENG CHIANG

This paper proposes synchronization and chaotic communication for a class of Lur'e type discrete-time chaotic systems. The scalar outputs are suitably chosen in a flexible manner to be linear, nonlinear, or predictive, and along with the drive system are then written in an output injection form. Then with a suitable design of an observer-based response system, dead-beat performance is achieved for synchronization and chaotic communications. Then disturbances in the drive system are considered. Using an ℋ∞performance criterion, the disturbance is attenuated to a prescribed level by solving linear matrix inequalities (LMIs). Numerical simulations are carried out to verify the dead-beat performance.


Sign in / Sign up

Export Citation Format

Share Document