scholarly journals Design, Synthesis, and Antifungal Activity of New α-Aminophosphonates

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Zahra Rezaei ◽  
Soghra Khabnadideh ◽  
Kamiar Zomorodian ◽  
Keyvan Pakshir ◽  
Setareh Nadali ◽  
...  

α-Aminophosphonates are bioisosteres of amino acids and have several pharmacological activities. These compounds have been synthesized by various routes from reaction between amine, aldehyde, and phosphite compounds. In order to synthesize α-aminophosphonates, catalytic effect of CuCl2 was compared with FeCl3. Also all designed structures as well as griseofulvin were docked into the active site of microtubule (1JFF), using Autodock program. The results showed that the reactions were carried out in the presence of CuCl2 in lower yields, and also the time of reaction was longer in comparison with FeCl3. The chemical structures of the new compounds were confirmed by spectral analyses. The compounds were investigated for antifungal activity against several fungi in comparison with griseofulvin. An indole-derived bis(α-aminophosphonates) with the best negative ΔG in docking study showed maximum antifungal activity against Microsporum canis, and other investigated compounds did not have a good antifungal activity.

2019 ◽  
Vol 41 (3) ◽  
pp. 549-549
Author(s):  
Xuesong Wang and Xiaorong Tang Xuesong Wang and Xiaorong Tang

A series of novel benzamide derivatives according to fluopicolide were designed and synthesized following the rule of combination carboxylic acid amides and amines derivatives together. The antifungal activity of the 15 new compounds were evaluated in vitro against five pathogenic fungi, including Sclerotinia sclerotiorum, Gibberella zeae, Rhizoctonia solani, Helminthosporium maydis and Botrytis cinerea. Almost all the structure have not been reported, except compounds 3, 5 and 6. A surprising finding is that all the five tested fungi breed faster than negative controls when supplementary with compound 715 , respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Musab Mohamed Ibrahim ◽  
Tilal Elsaman ◽  
Mosab Yahya Al-Nour

The design, synthesis, and development of novel non-steroidal anti-inflammatory drugs (NSAIDs) with better activity and lower side effects are respectable area of research. Novel Diclofenac Schiff’s bases (M1, M2, M4, M7, and M8) were designed and synthesized, and their respective chemical structures were deduced using various spectral tools (IR, 1H NMR, 13C NMR, and MS). The compounds were synthesized via Schiff’s condensation reaction and their anti-inflammatory activity was investigated applying the Carrageenan-induced paw edema model against Diclofenac as positive control. Percentage inhibition of edema indicated that all compounds were exhibiting a comparable anti-inflammatory activity as Diclofenac. Moreover, the anti-inflammatory activity was supported via virtual screening using molecular docking study. Interestingly compound M2 showed the highest in vivo activity (61.32% inhibition) when compared to standard Diclofenac (51.36% inhibition) as well as the best binding energy score (-10.765) and the virtual screening docking score (-12.142).


2020 ◽  
Author(s):  
Anurag Agrawal ◽  
Nem Kumar Jain ◽  
Neeraj Kumar ◽  
Giriraj T Kulkarni

This study belongs to identification of suitable COVID-19 inhibitors<br><div><br></div><div>Coronavirus became pandemic very soon and is a potential threat to human lives across the globe. No approved drug is currently available therefore an urgent need has been developed for any antiviral therapy for COVID-19. For the molecular docking study, ten herbal molecules have been included in the current study. The three-dimensional chemical structures of molecules were prepared through ChemSketch 2015 freeware. Molecular docking study was performed using AutoDock 4.2 simulator and Discovery studio 4.5 was employed to predict the active site of target enzyme. Result indicated that all-natural molecules found in the active site of enzyme after molecular docking. Oxyacanthine and Hypericin (-10.990 and -9.05 and kcal/mol respectively) have shown good binding efficacy among others but Oxyacanthine was the only natural product which made some of necessary interactions with residues in the enzyme require for target inhibition. Therefore Oxyacanthine may be considered to be potential inhibitor of main protease enzyme of virus but need to be explored for further drug development process. <br></div>


2021 ◽  
Vol 17 ◽  
Author(s):  
Shaik Adamshafi ◽  
Venkatarao Veera ◽  
Mohan Rao SVM ◽  
Kishore Pilli VVN

Introduction: Progress in the development of triazolyl-oxadiazoles is a bisphosphonate-700 inhibitor is still continuing with an outcome of the good scaffold as oxadiazole as well as triazoles individually for antibacterial activity. Hence, we proposed a suitable approach for the synthesis of dual heterocyclic analogues consisting of the therapeutically used non steroidal anti-inflammatory drugs in a combined form and evaluated for their antibacterial, antifungal activities, docking studies. Methods: The chemical structures were confirmed by various spectroscopic methods like IR, 1H NMR, 13C NMR, mass, and elemental analysis. The antibacterial, antifungal activity of these compounds was screened against Gram-positive, Gram-negative bacteria and fungal stains by agar well diffusion method. The crystal structure of S. aureus complexed with active site of bisphosphonate BPH-700 (2ZCS) was obtained from the Protein Database (PDB, http://www.rcsb.org). Molecular properties, drug likeness score, lipophilicity and solubility parameters by Molinspiration and Molsoft software. 7f (2-NO2, 5-Ome), 7g (3-Cl, 4-Cl), 7a (2-NO2) Results: Among the synthesised NSAID-triazolyl-oxadiazole containing 2-nitro-5-methoxy (7f), 3,4-dichloro (7g) derivatives were found to be high active antibacterial agents against S. aureus, E. coli with MICs 16, 19 μg/mL respectively. 2-nitro-5-methoxy (7f), 4-bromo (7h) and 2-nitro (7a) derivatives displayed superior antifungal activity against A. niger and MICs 56, 76, 130 μg/mL respectively. From molecular docking NSAID linked to 3,4-dichloro analogue (7g) revealed stronger binding interaction (ΔG =7.90 Kcal/Mol) with amino acids Asp49 (1.19 A˚), Arg45 (2.17 A˚), Lys17, Lys46 in the active site of S. aureus complexed with bisphosphonate Bph-700 (2ZCS). The compounds followed the Lipinski ‘Rule of five’ were synthesized for antimicrobial screening as oral bioavailable drugs/leads. Maximum drug likeness model score 0.49, 0.41 was found for compounds 7h, 7b. Conclusion: The present work, through simple synthetic approaches, led to the development of novel hybrids of triazole-oxadiazole pharmacophores that exhibited remarkable biological activities against different microorganisms. The compounds showed suitable drug like properties and are expected to present good bioavailability profile. Discussion: An efficient combination of molecular modeling and biological activity provided an insight into QSAR guide lines that could aid in further development of these derivatives.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed Dehamchia ◽  
Zine Regainia

Herein, we describe an efficient one-step synthesis of new fused benzothiadiazepine-1,1-dioxides and macrocyclic sulfamides. The synthesis of these compounds was achieved in moderate yields starting from previously described N,N′-disubstituted symmetric sulfamides and N-tert-butoxycarbonyl, N′-alkyl sulfamide. The chemical structures of all the new compounds reported in this work were confirmed by NMR, IR, and mass spectrometry. These compounds are beneficial building blocks that can be used in deriving new chemical entities that exert a wide spectrum of pharmacological activities.


2017 ◽  
Vol 13 (1) ◽  
pp. 5923-5931
Author(s):  
Ahmed S. Aboraia ◽  
Mohammed A. Hara ◽  
Mostafa H. Abdelrahman ◽  
Mohamed M. Amin ◽  
Osama I. El-Sabbaghab

A new series of 1-(4-Acetylphenyl)-7,7-dimethyl-3-(substitutedphenyl)-1,2,3,4,7,8-octahydroquinazolin-5(6H)-ones (6-15) were synthesized and tested against COX-1 and COX-2 enzymes. Those compounds exhibited strong interaction at the COX-2 binding site and poor interaction at the COX-1 active site. Subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assay; most of the compounds especially compounds 6, 7, 12, 13, and 16 exhibited potent anti-inflammatory effects, selective COX-2 inhibition, with half-maximal inhibitor concentration (IC50) values of 0.22–1.42 μM and selectivity index (SI) values of 6.16–14.18 compared with celecoxib (IC50 = 0.05 μM and COX-2 SI: 296), diclofenac (IC50 = 0.8 μM and COX-2 SI: 4.87), and indomethacin (IC50 = 0.49 μM and COX-2 SI: 0.08) as reference drugs. Docking study has been carried out to confirm the binding affinity and selectivity of the most active compound (compound 6) to COX-2 enzyme.


Author(s):  
Awatef A. Ebrahim Al Ani ◽  
Ali Naim Hussein ◽  
Zahraa A. G. Mohammed Ali

Background: Numerous animal studies and clinical trials in cancer have shown that ibuprofen reduces the incidence of and mortality from cancer. Synthesis of novel conjugate of ibuprofen with the 2-phenyl amino pyrimidine derivative (to mimic small molecules kinase inhibitor anticancers) exhibits significant increase, as compared to free ibuprofen, potential to inhibit proliferation of cancer cells. Methods: The docking study was performed with GOLD software supplied by the Cambridge Crystallographic Data Centre. Thereafter, the chemical synthesis was established. The chemical structures of this study was confirmed by spectral instrumentation; infrared, differential scanning calorimeter thermal analyzer, proton and carbon-13 nuclear magnetic resonance. Results and Discussions: The docking process was successfully conducted and the chemical synthesis yielded a good per cent. The spectral interpretations show characteristic identification of the target chemical compound.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Nafiz Öncü Can ◽  
Ulviye Acar Çevik ◽  
Begüm Nurpelin Sağlık ◽  
Serkan Levent ◽  
Büşra Korkut ◽  
...  

Due to anticandidal importance of azole compounds, a new series of benzimidazole-triazole derivatives(5a–5s)were designed and synthesized as ergosterol inhibitors. The chemical structures of the target compounds were characterized by spectroscopic methods. The final compounds were screened for antifungal activity againstCandida glabrata(ATCC 90030),Candida krusei(ATCC 6258),Candida parapsilosis(ATCC 22019), andCandida albicans(ATCC 24433). Compounds5iand5sexhibited significant inhibitory activity againstCandidastrains with MIC50values ranging from 0.78 to 1.56 μg/mL. Cytotoxicity results revealed that IC50values of compounds5iand5sagainst NIH/3T3 are significantly higher than their MIC50values. Effect of the compounds5iand5sagainst ergosterol biosynthesis was determined by LC-MS-MS analysis. Both compounds caused a significant decrease in the ergosterol level. The molecular docking studies were performed to investigate the interaction modes between the compounds and active site of lanosterol 14-α-demethylase (CYP51), which is as a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for final compounds.


Sign in / Sign up

Export Citation Format

Share Document