scholarly journals Convex Image Segmentation Model Based on Local and Global Intensity Fitting Energy and Split Bregman Method

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yunyun Yang ◽  
Boying Wu

We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results. We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize the proposed energy functional efficiently. By using a weight function that varies with location of the image, the proposed model can balance the weights between the local and global fitting terms dynamically. We have applied the proposed model to synthetic and real images with desirable results. Comparison with other models also demonstrates the accuracy and superiority of the proposed model.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaosheng Yu ◽  
Yuanchen Qi ◽  
Ziwei Lu ◽  
Nan Hu

We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.


Author(s):  
Shigang Liu ◽  
Yali Peng ◽  
Guoyong Qiu ◽  
Xuanwen Hao

This paper presents a local statistical information (LSI) active contour model. Assuming that the distribution of intensity belonging to each region is a Gaussian distribution with spatially varying statistical information, and defining an energy function, the authors integrate the entire image domain. Then, this energy is incorporated into a variational level set formulation. Finally, by minimizing the energy functional, a curve evolution equation can be obtained. Because the image local information is considered, the proposed model can effectively deal with the image with intensity inhomogeneity. Experimental results on synthetic and real images demonstrate that the proposed model can effectively segment the image with intensity inhomogeneity.


Author(s):  
YUNYUN YANG ◽  
YI ZHAO ◽  
BOYING WU

In this paper, we propose an efficient active contour model for multiphase image segmentation in a variational level set formulation. By incorporating the globally convex segmentation idea and the split Bregman method into the multiphase formulation of the local and global intensity fitting energy model, our new model improved the original local and global intensity fitting energy model in the following aspects. First, we propose a new energy functional using the globally convex segmentation method to guarantee fast convergence. Second, we incorporate information from the edge into the energy functional by using a non-negative edge detector function to detect boundaries more easily. Third, instead of a constant value to control the influence of the local and global intensity fitting terms, we use a weight function varying with the locations of the image to balance the weights between the local and the global fitting terms dynamically. Lastly, the special structure of our energy functional enables us to apply the split Bregman method to minimize the energy much more efficiently. We have applied our model to synthetic images and real brain MR images with promising results. Experimental results demonstrate the efficiency and superiority of our model.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yunyun Yang ◽  
Boying Wu

This paper presents a new and fast multiphase image segmentation model for color images. We propose our model by incorporating the globally convex image segmentation method and the split Bregman method into the piecewise constant multiphase Vese-Chan model for color images. We have applied our model to many synthetic and real color images. Numerical results show that our model can segment color images with multiple regions and represent boundaries with complex topologies, including triple junctions. Comparison with the Vese-Chan model demonstrates the efficiency of our model. Besides, our model does not require a priori denoising step and is robust with respect to noise.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Boying Wu ◽  
Yunyun Yang

This paper presents a local- and global-statistics-based active contour model for image segmentation by applying the globally convex segmentation method. We first propose a convex energy functional with a local-Gaussian-distribution-fitting term with spatially varying means and variances and an auxiliary global-intensity-fitting term. A weight function that varies dynamically with the location of the image is applied to adjust the weight of the global-intensity-fitting term dynamically. The weighted total variation norm is incorporated into the energy functional to detect boundaries easily. The split Bregman method is then applied to minimize the proposed energy functional more efficiently. Our model has been applied to synthetic and real images with promising results. With the local-Gaussian-distribution-fitting term, our model can also handle some texture images. Comparisons with other models show the advantages of our model.


2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
Liming Tang

The fuzzy C means clustering algorithm with spatial constraint (FCMS) is effective for image segmentation. However, it lacks essential smoothing constraints to the cluster boundaries and enough robustness to the noise. Samson et al. proposed a variational level set model for image clustering segmentation, which can get the smooth cluster boundaries and closed cluster regions due to the use of level set scheme. However it is very sensitive to the noise since it is actually a hard C means clustering model. In this paper, based on Samson’s work, we propose a new variational level set model combined with FCMS for image clustering segmentation. Compared with FCMS clustering, the proposed model can get smooth cluster boundaries and closed cluster regions due to the use of level set scheme. In addition, a block-based energy is incorporated into the energy functional, which enables the proposed model to be more robust to the noise than FCMS clustering and Samson’s model. Some experiments on the synthetic and real images are performed to assess the performance of the proposed model. Compared with some classical image segmentation models, the proposed model has a better performance for the images contaminated by different noise levels.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Mohammed M. Abdelsamea ◽  
Giorgio Gnecco ◽  
Mohamed Medhat Gaber ◽  
Eyad Elyan

Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses.


2016 ◽  
Vol 10 (4) ◽  
pp. 314-324 ◽  
Author(s):  
Mazlinda Ibrahim ◽  
Ke Chen ◽  
Lavdie Rada

Image segmentation and registration are two of the most challenging tasks in medical imaging. They are closely related because both tasks are often required simultaneously. In this article, we present an improved variational model for a joint segmentation and registration based on active contour without edges and the linear curvature model. The proposed model allows large deformation to occur by solving in this way the difficulties other jointly performed segmentation and registration models have in case of encountering multiple objects into an image or their highly dependence on the initialisation or the need for a pre-registration step, which has an impact on the segmentation results. Through different numerical results, we show that the proposed model gives correct registration results when there are different features inside the object to be segmented or features that have clear boundaries but without fine details in which the old model would not be able to cope.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guodong Wang ◽  
Qian Dong ◽  
Zhenkuan Pan ◽  
Ximei Zhao ◽  
Jinbao Yang ◽  
...  

Ultrasound images are often corrupted by multiplicative noises with Rayleigh distribution. The noises are strong and often called speckle noise, so segmentation is a hard work with this kind of noises. In this paper, we incorporate multiplicative noise removing model into active contour model for ultrasound images segmentation. To model gray level behavior of ultrasound images, the classic Rayleigh probability distribution is considered. Our model can segment the noisy ultrasound images very well. Finally, a fast method called Split-Bregman method is used for the easy implementation of segmentation. Experiments on a variety of synthetic and real ultrasound images validate the performance of our method.


Sign in / Sign up

Export Citation Format

Share Document