scholarly journals Hopf Bifurcation of a Differential-Algebraic Bioeconomic Model with Time Delay

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaojian Zhou ◽  
Xin Chen ◽  
Yongzhong Song

We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.

2017 ◽  
Vol 10 (05) ◽  
pp. 1750061
Author(s):  
Yong Yao ◽  
Zuxiong Li ◽  
Huili Xiang ◽  
Hailing Wang ◽  
Zhijun Liu

In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington–DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 405-410
Author(s):  
Mohammed Ismail ◽  
Atta A. K. Abu Hany ◽  
Aysha Agha

AbstractWe establish a mathematical model for the three-patch diffusion predator-prey system with time delays. The theory of Hopf bifurcation is implemented, choosing the time delay parameter as a bifurcation parameter. We present the condition for the existence of a periodic orbit of the Hopf-type from the positive equilibrium.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


2020 ◽  
Vol 13 (05) ◽  
pp. 2050034
Author(s):  
Chunyan Gao ◽  
Haihong Liu ◽  
Zengrong Liu ◽  
Yuan Zhang ◽  
Fang Yan

Biological experiments clarify that p53-Mdm2 module is the core of tumor network and p53 oscillation plays an important role in determining the tumor cell fate. In this paper, we investigate the effect of time delay on the oscillatory behavior induced by Hopf bifurcation in p53-Mdm2 system. First, the stability of the unique positive equilibrium point and the existence of Hopf bifurcation are investigated by using the time delay as the bifurcation parameter and by applying the bifurcation theory. Second, the explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. In addition, the combination of numerical simulation results and theoretical calculation results indicates that time delays in p53-Mdm2 system are critical for p53 oscillations. The results may help us to better understand the biological functions of p53 pathway and provide clues for treatment of cancer.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950028
Author(s):  
Keying Song ◽  
Wanbiao Ma ◽  
Zhichao Jiang

In this paper, a model with time delay describing biodegradation of Microcystins (MCs) is investigated. Firstly, the stability of the positive equilibrium and the existence of Hopf bifurcations are obtained. Furthermore, an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out to illustrate the applications of the results.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950189 ◽  
Author(s):  
A. Aghriche ◽  
R. Yafia ◽  
M. A. Aziz Alaoui ◽  
A. Tridane ◽  
F. A. Rihan

This paper takes the reaction–diffusion approach to deal with the quiescent females phase, so as to describe the dynamics of invasion of aedes aegypti mosquitoes, which are divided into three subpopulations: eggs, pupae and female. We mainly investigate whether the time of quiescence (delay) in the females phase can induce Hopf bifurcation. By means of analyzing the eigenvalue spectrum, we show that the persistent positive equilibrium is asymptotically stable in the absence of time delay, but loses its stability via Hopf bifurcation when time delay crosses some critical value. Using normal form and center manifold theory, we investigate the stability of the bifurcating branches of periodic solutions and the direction of the Hopf bifurcation. Numerical simulations are carried out to support our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yahong Peng ◽  
Tonghua Zhang

We consider a model for gene expression with one or two time delays and diffusion. The local stability and delay-induced Hopf bifurcation are investigated. We also derive the formulas determining the direction and the stability of Hopf bifurcations by calculating the normal form on the center manifold.


2007 ◽  
Vol 17 (06) ◽  
pp. 2149-2157 ◽  
Author(s):  
JUNJIE WEI ◽  
DEJUN FAN

The dynamics of a Mackey–Glass equation with delay are investigated. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result due to Wu [1998] and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [1994].


Sign in / Sign up

Export Citation Format

Share Document