scholarly journals Stability and Hopf Bifurcation Analysis of a Gene Expression Model with Diffusion and Time Delay

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yahong Peng ◽  
Tonghua Zhang

We consider a model for gene expression with one or two time delays and diffusion. The local stability and delay-induced Hopf bifurcation are investigated. We also derive the formulas determining the direction and the stability of Hopf bifurcations by calculating the normal form on the center manifold.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaojian Zhou ◽  
Xin Chen ◽  
Yongzhong Song

We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.


Author(s):  
Junjie Wei ◽  
Chunbo Yu

The dynamics of a gene expression model with time delay are investigated. The investigation confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. An explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions has been derived by using the theory of the centre manifold and the normal forms method. The global existence of periodic solutions has been established using a global Hopf bifurcation result by Wu and a Bendixson criterion for higher-dimensional ordinary differential equations due to Li and Muldowney.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xuhui Li

A competitive model of market structure with consumptive delays is considered. The local stability of the positive equilibrium and the existence of local Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equation. The explicit formulas determining the stability and other properties of bifurcating periodic solutions are derived by using normal form theory and center manifold argument. Finally, numerical simulations are given to support the analytical results.


2017 ◽  
Vol 27 (13) ◽  
pp. 1750194 ◽  
Author(s):  
Chengxian Li ◽  
Haihong Liu ◽  
Tonghua Zhang ◽  
Fang Yan

In this paper, a gene regulatory network mediated by small noncoding RNA involving two time delays and diffusion under the Neumann boundary conditions is studied. Choosing the sum of delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the corresponding characteristic equation. It is shown that the sum of delays can induce Hopf bifurcation and the diffusion incorporated into the system can effect the amplitude of periodic solutions. Furthermore, the spatially homogeneous periodic solution always exists and the spatially inhomogeneous periodic solution will arise when the diffusion coefficients of protein and mRNA are suitably small. Particularly, the small RNA diffusion coefficient is more robust and its effect on model is much less than protein and mRNA. Finally, the explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, numerical simulations are carried out to illustrate our theoretical analysis.


2013 ◽  
Vol 18 (3) ◽  
pp. 377-397
Author(s):  
Xiang Wu ◽  
Chunrui Zhang

This work explores a coupled Oregonator model. By analyzing the associated characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated, as well as the stability and direction of the Hopf bifurcation are determined by employing the normal form method and the center manifold reduction. We also discussed the Z2 equivariant property and the existence of multiple periodic solutions. Numerical simulations are presented to illustrate the results in Section 5.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document