scholarly journals The Effects of TLR Activation on T-Cell Development and Differentiation

2012 ◽  
Vol 2012 ◽  
pp. 1-32 ◽  
Author(s):  
Bo Jin ◽  
Tao Sun ◽  
Xiao-Hong Yu ◽  
Ying-Xiang Yang ◽  
Anthony E. T. Yeo

Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.

2018 ◽  
Vol 115 (26) ◽  
pp. 6780-6785 ◽  
Author(s):  
Erxia Shen ◽  
Qin Wang ◽  
Hardis Rabe ◽  
Wenquan Liu ◽  
Harvey Cantor ◽  
...  

Lineage commitment and differentiation into CD4+T cell subsets reflect an interplay between chromatin regulators and transcription factors (TF). Follicular T cell development is regulated by the Bcl6 TF, which helps determine the phenotype and follicular localization of both CD4+follicular helper T cells (TFH) and follicular regulatory T cells (TFR). Here we show that Bcl6-dependent control of follicular T cells is mediated by a complex formed between Bcl6 and the Mi-2β-nucleosome-remodeling deacetylase complex (Mi-2β-NuRD). Formation of this complex reflects the contribution of the intracellular isoform of osteopontin (OPN-i), which acts as a scaffold to stabilize binding between Bcl6 and the NuRD complex that together regulate the genetic program of both TFHand TFRcells. Defective assembly of the Bcl6–NuRD complex distorts follicular T cell differentiation, resulting in impaired TFRdevelopment and skewing of the TFHlineage toward a TH1-like program that includes expression of Blimp1, Tbet, granzyme B, and IFNγ. These findings define a core Bcl6-directed transcriptional complex that enables CD4+follicular T cells to regulate the germinal center response.


2004 ◽  
Vol 200 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Y. Jeffrey Chiang ◽  
Connie L. Sommers ◽  
Martha S. Jordan ◽  
Hua Gu ◽  
Lawrence E. Samelson ◽  
...  

c-Cbl is an adaptor protein that negatively regulates signal transduction events involved in thymic-positive selection. To further characterize the function of c-Cbl in T cell development, we analyzed the effect of c-Cbl inactivation in mice deficient in the scaffolding molecule SLP-76. SLP-76–deficient mice show a high frequency of neonatal lethality; and in surviving mice, T cell development is blocked at the DN3 stage. Inactivation of c-cbl completely reversed the neonatal lethality seen in SLP-76–deficient mice and partially reversed the T cell development arrest in these mice. SLP-76−/− Cbl−/− mice exhibited marked expansion of polarized T helper type (Th)1 and Th2 cell peripheral CD4+ T cells, lymphoid infiltrates of parenchymal organs, and premature death. This rescue of T cell development is T cell receptor dependent because it does not occur in recombination activating gene 2−/− SLP-76−/− Cbl−/− triple knockout mice. Analysis of the signal transduction properties of SLP-76−/− Cbl−/− T cells reveals a novel SLP-76– and linker for activation of T cells–independent pathway of extracellular signal–regulated kinase activation, which is normally down-regulated by c-Cbl.


1999 ◽  
Vol 190 (8) ◽  
pp. 1189-1196 ◽  
Author(s):  
Paul Gadue ◽  
Neil Morton ◽  
Paul L. Stein

T lymphocytes express two Src tyrosine kinases, Lck and Fyn. While thymocyte and T cell subsets are largely normal in fyn−/− mice, animals lacking Lck have impaired T cell development. Here, it is shown that Fyn is required for the rapid burst of interleukin (IL)-4 and IL-13 synthesis, which occurs promptly after T cell receptor activation. The lack of cytokine induction in fyn mutant mice is due to a block in natural killer (NK) T cell development. Studies using bone marrow chimeras indicate that the defect behaves in a cell-autonomous manner, and the lack of NK T cells is probably not caused by inappropriate microenvironmental cues. Both NK T cells and conventional T cells express similar levels of Lck, implying that Fyn and Lck have distinct roles in regulating NK T cell ontogeny. The fyn mutation defines the first signaling molecule that is selectively required for NK T cell, but not for T lymphocyte or NK cell development.


2001 ◽  
Vol 194 (1) ◽  
pp. 99-106 ◽  
Author(s):  
David Allman ◽  
Fredrick G. Karnell ◽  
Jennifer A. Punt ◽  
Sonia Bakkour ◽  
Lanwei Xu ◽  
...  

Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4+CD8+ double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2−/−) or Src homology 2 domain–containing leukocyte protein of 76 kD (SLP-76)−/− mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2−/− progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3ε and pre-Tα mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2−/− mice with a TCRβ transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell–specific signals associated with development of DP thymocytes.


2010 ◽  
Vol 207 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Guoping Fu ◽  
Yuhong Chen ◽  
Mei Yu ◽  
Andy Podd ◽  
James Schuman ◽  
...  

Phospholipase Cγ1 (PLCγ1) is an important signaling effector of T cell receptor (TCR). To investigate the role of PLCγ1 in T cell biology, we generated and examined mice with T cell–specific deletion of PLCγ1. We demonstrate that PLCγ1 deficiency affects positive and negative selection, significantly reduces single-positive thymocytes and peripheral T cells, and impairs TCR-induced proliferation and cytokine production, and the activation of ERK, JNK, AP-1, NFAT, and NF-κB. Importantly, PLCγ1 deficiency impairs the development and function of FoxP3+ regulatory T cells, causing inflammatory/autoimmune symptoms. Therefore, PLCγ1 is essential for T cell development, activation, and tolerance.


1991 ◽  
Vol 173 (3) ◽  
pp. 539-547 ◽  
Author(s):  
O Mazda ◽  
Y Watanabe ◽  
J Gyotoku ◽  
Y Katsura

The present study was performed to identify cells responsible for the elimination of T cells reactive with minor lymphocyte-stimulating (Mls) antigens during T cell development. Experiments were carried out in a fetal thymus organ culture (FTOC) system. To examine the tolerance-inducing activity, various populations of cells from adult CBA/J (Mls-1a) mice were injected into deoxyguanosine (dGuo)-treated FTOC of C3H/He (Mls-1b) mice with a microinjector, and 2 d later, the thymus lobes were injected with fetal thymus cells from C3H/He mice as T cell precursors. After 14 d of cultivation, cells were harvested and assayed for the expression of the T cell receptor V beta 6 element. The absence or marked reduction of T cells expressing V beta 6 at high levels (V beta 6high) was regarded as indicating the deletion of Mls-1a-reactive T cells. T cell-depleted populations of thymic as well as splenic cells from CBA/J mice were able to induce clonal deletion. Further characterization of the effector cells was carried out by fractionating the spleen cells before injecting them into dGuo-FTOC. None of the dish-adherent population, dish-nonadherent population, or purified B cells alone were able to induce clonal deletion, whereas the addition of purified B cells to adherent cells restored tolerance inducibility. It was further shown that a combination of CBA/J B cells and C3H/He dendritic cells was effective in eliminating Mls-reactive clones. These results indicate that for the deletion of clones reactive with Mls antigens during T cell development in the thymus, both DC and B cells are required.


2001 ◽  
Vol 194 (6) ◽  
pp. 847-854 ◽  
Author(s):  
Andrea Iellem ◽  
Margherita Mariani ◽  
Rosmarie Lang ◽  
Helios Recalde ◽  
Paola Panina-Bordignon ◽  
...  

Chemokines dictate regional trafficking of functionally distinct T cell subsets. In rodents and humans, a unique subset of CD4+CD25+ cytotoxic T lymphocyte antigen (CTLA)-4+ regulatory T cells (Treg) has been proposed to control peripheral tolerance. However, the molecular basis of immune suppression and the trafficking properties of Treg cells are still unknown. Here, we determined the chemotactic response profile and chemokine receptor expression of human blood-borne CD4+CD25+ Treg cells. These Treg cells were found to vigorously respond to several inflammatory and lymphoid chemokines. Treg cells specifically express the chemokine receptors CCR4 and CCR8 and represent a major subset of circulating CD4+ T cells responding to the chemokines macrophage-derived chemokine (MDC)/CCL22, thymus and activation-regulated chemokine (TARC)/CCL17, I-309/CCL1, and to the virokine vMIP-I (ligands of CCR4 and CCR8). Blood-borne CD4+ T cells that migrate in response to CCL1 and CCL22 exhibit a reduced alloproliferative response, dependent on the increased frequency of Treg cells in the migrated population. Importantly, mature dendritic cells preferentially attract Treg cells among circulating CD4+ T cells, by secretion of CCR4 ligands CCL17 and CCL22. Overall, these results suggest that CCR4 and/or CCR8 may guide Treg cells to sites of antigen presentation in secondary lymphoid tissues and inflamed areas to attenuate T cell activation.


Author(s):  
Mauro Corrado ◽  
Dijana Samardžić ◽  
Marta Giacomello ◽  
Nisha Rana ◽  
Erika L. Pearce ◽  
...  

AbstractOptic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor β (Tcrβ) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1−/− thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.


Sign in / Sign up

Export Citation Format

Share Document