scholarly journals Unique Chemotactic Response Profile and Specific Expression of Chemokine Receptors Ccr4 and Ccr8 by Cd4+Cd25+ Regulatory T Cells

2001 ◽  
Vol 194 (6) ◽  
pp. 847-854 ◽  
Author(s):  
Andrea Iellem ◽  
Margherita Mariani ◽  
Rosmarie Lang ◽  
Helios Recalde ◽  
Paola Panina-Bordignon ◽  
...  

Chemokines dictate regional trafficking of functionally distinct T cell subsets. In rodents and humans, a unique subset of CD4+CD25+ cytotoxic T lymphocyte antigen (CTLA)-4+ regulatory T cells (Treg) has been proposed to control peripheral tolerance. However, the molecular basis of immune suppression and the trafficking properties of Treg cells are still unknown. Here, we determined the chemotactic response profile and chemokine receptor expression of human blood-borne CD4+CD25+ Treg cells. These Treg cells were found to vigorously respond to several inflammatory and lymphoid chemokines. Treg cells specifically express the chemokine receptors CCR4 and CCR8 and represent a major subset of circulating CD4+ T cells responding to the chemokines macrophage-derived chemokine (MDC)/CCL22, thymus and activation-regulated chemokine (TARC)/CCL17, I-309/CCL1, and to the virokine vMIP-I (ligands of CCR4 and CCR8). Blood-borne CD4+ T cells that migrate in response to CCL1 and CCL22 exhibit a reduced alloproliferative response, dependent on the increased frequency of Treg cells in the migrated population. Importantly, mature dendritic cells preferentially attract Treg cells among circulating CD4+ T cells, by secretion of CCR4 ligands CCL17 and CCL22. Overall, these results suggest that CCR4 and/or CCR8 may guide Treg cells to sites of antigen presentation in secondary lymphoid tissues and inflamed areas to attenuate T cell activation.

2012 ◽  
Vol 2012 ◽  
pp. 1-32 ◽  
Author(s):  
Bo Jin ◽  
Tao Sun ◽  
Xiao-Hong Yu ◽  
Ying-Xiang Yang ◽  
Anthony E. T. Yeo

Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3280-3280
Author(s):  
Kazuyuki Murase ◽  
Yutaka Kawano ◽  
Jeremy Ryan ◽  
Ken-ichi Matsuoka ◽  
Gregory Bascug ◽  
...  

Abstract Abstract 3280 CD4+CD25+Foxp3+ regulatory T cells (Treg) play an important role in the maintenance of self-tolerance and immune homeostasis and Treg deficiency contributes to the development of autoimmune diseases. CD4Treg, conventional CD4 T cells (Tcon) and CD8 T cells are derived from lymphocyte progenitor cells that differentiate into distinct functional subsets in the thymus before export to the peripheral circulation. As T cells differentiate and expand in the periphery, each T cell subset is differentially regulated and subjected to distinct homeostatic signals. For example, interleukin-2 (IL-2) is a critical regulator of Treg development, expansion and survival and lack of IL-2 results in selective Treg deficiency. In regulating Treg homeostasis, IL-2 has multiple and distinct effects on Treg differentiation, proliferation and susceptibility to apoptosis. To determine the mechanism whereby IL-2 affects susceptibility of Treg to apoptosis, we used a new flow cytometry-based assay (BH3 profiling) to measure the mitochondrial membrane depolarization in response to a panel of pro-apoptotic BH3 peptides (BIM, BID, BAD, NOXA, PUMA, BMF, HRK). This assay allowed us to compare “priming” which we define as susceptibility to BH3 peptide-induced mitochondrial membrane depolarization in different T cell subsets, including CD4 Treg, CD4 Tcon and CD8 T cells. We also examined cell surface expression of CD95 death receptor (Fas) and cytoplasmic expression of Bcl-2 and Ki67 as additional measures of susceptibility to apoptosis and proliferation in each subset. In resting blood obtained from healthy donors (n=10), CD4 Treg were more “primed” than either CD4 Tcon or CD8 T cells when exposed to several BH3 peptides (PUMA, BMF and the combination of BAD+NOXA). CD4 Treg were also found to have decreased expression of Bcl-2 and increased expression of CD95 and Ki67 compared to CD4 Tcon or CD8 T cells. Thus, Treg in healthy individuals have higher proliferative activity and are more susceptible to apoptosis than other major T cell subsets through both mitochondrial and death receptor pathways. To establish the functional effects of TCR stimulation and IL-2, CD4 Treg, CD4 Tcon and CD8 T cells were purified by cell sorting and cultured for 5–6 days with or without TCR stimulation (1μg/ml anti-CD3 + 1μg/ml anti-CD28) and IL-2 (100 IU/ml). Results were compared to cells cultured in media alone. Results are summarized in the table below. CD4 Tcon and CD8 T cells responded in a similar fashion to either TCR stimulation alone or TCR plus IL-2. This response included increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation (Ki-67). IL-2 alone had no effect on CD4 Tcon or CD8 T cells. In contrast, TCR stimulation alone had no effect on CD4 Treg but IL-2 alone reduced BH3 priming and increased expression of Bcl-2. Combined TCR stimulation plus IL-2 in Treg increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation. Thus, TCR stimulation reversed the anti-apoptotic effects of IL-2 alone and markedly increased susceptibility of Treg to apoptosis. When compared with CD4 Tcon and CD8 T cells, these studies demonstrate distinct effects of TCR stimulation and IL-2 on both mitochondrial and death receptor pathways of apoptosis in CD4 Treg and define mechanisms whereby TCR stimulation and IL-2 interact to regulate Treg homeostasis. Table 1. Effects of in vitro TCR stimulation and IL-2 on apoptotic pathways of T cell subsets TCR Stimulation IL-2 TCR + IL2 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 CD4 Treg – – – – ↓ ↑ – – ↑ ↓ ↑ ↑ CD4 Tcon ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ CD8 ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (15) ◽  
pp. 2418-2427 ◽  
Author(s):  
Xiaomei Wang ◽  
Jin Su ◽  
Alexandra Sherman ◽  
Geoffrey L. Rogers ◽  
Gongxian Liao ◽  
...  

Key Points Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets. Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yuehua Hu ◽  
Yanhua Zheng ◽  
Ya Wu ◽  
Bing Ni ◽  
Shugui Shi

Immune responses and inflammation are key elements in the pathogenesis of ischemic stroke (IS). Although the involvement of IL-17A in IS has been demonstrated using animal models, the involvement of IL-17A and IL-17-secreting T cell subsets in IS patients has not been verified, and whether the balance of Treg/IL-17-secreting T cells is altered in IS patients remains unknown. In the present study, we demonstrated that the proportion of peripheral Tregs and the levels of IL-10 and TGF-βwere reduced in patients with IS compared with controls using flow cytometry (FCM), real-time PCR, and ELISA assays. However, the proportions of Th17 andγδT cells, the primary IL-17A-secreting cells, increased dramatically, and these effects were accompanied by increases in the levels of IL-17A, IL-23, IL-6, and IL-1βin IS patients. These studies suggest that the increase in IL-17A-producing cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and IL-17A-producing cells might be helpful for the treatment of IS.


Blood ◽  
2011 ◽  
Vol 117 (24) ◽  
pp. 6532-6541 ◽  
Author(s):  
Bastian Hoechst ◽  
Jaba Gamrekelashvili ◽  
Michael P. Manns ◽  
Tim F. Greten ◽  
Firouzeh Korangy

Abstract CD4+ T helper cell differentiation is essential for mounting robust immune responses without compromising unresponsiveness toward self-tissue. Here, we show that different subsets of myeloid cells isolated from human peripheral blood modulate TGF-β–dependent CD4+ T-cell developmental programs ex vivo. Human CD14+HLA-DR−/low myeloid-derived suppressor cells (MDSCs) induce Foxp3+ regulatory T cells, whereas CD14+HLA-DR+ monocytes promote generation of IL-17–secreting RORc+ Th17 cells when cocultured with naive CD4+ T cells. More importantly, not only do these 2 subsets modulate the de novo induction of Tregs and Th17 cells from CD4+ T cells, but MDSCs also catalyze the transdifferentiation of Foxp3+ regulatory T cells from monocyte-induced Th17 cells. The mechanism of such Th17 plasticity is dependent on MDSC-derived TGF-β and retinoic acid. Our results identify a previously unknown feature of the different subsets of CD14+ myeloid cells namely their pivotal role in immune response regulation and plasticity of CD4+ T helper cells. We propose that different subsets of myeloid cells in humans can orchestrate the differentiation of naive CD4+ T cells into effector/regulatory T-cell subsets. The balance between these 2 subsets can impact the outcome of immune reaction from inflammation to tolerance.


2013 ◽  
Vol 109 (06) ◽  
pp. 980-990 ◽  
Author(s):  
Nailin Li

SummaryAtherosclerosis is an inflammatory and thrombotic disease, in which both CD4+ T cells and platelets play important roles throughout all stages of atherogenesis. CD4+ T cells are the most abundant T cells present in atherosclerotic lesions. They are primarily seen as type 1 T helper (Th1) cells, while the other CD4+ T cell subsets Th2, Th17, and regulatory T (Treg) cells are also found in the lesions with lower frequencies. CD4+ T effector cells release various cytokines, which exert paracrine or autocrine effects among different CD4+ T cell subsets and other lesional cells and subsequently modulate inflammatory processes in the lesions. Platelets are instrumental in thrombosis and haemostasis, but also play important regulatory roles in immune response, inflammation, and angiogenesis. The present review summarises the current knowledge and/or understanding on how platelets regulate recruitment, activation, differentiation, and cytokine production of different CD4+ T cell subsets, as well as impacts of the platelet-CD4+ T cell interactions on atherogenesis. The research perspectives of platelet-CD4+ T cell interaction in atherosclerosis are also discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3312-3312
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Mary J. Stenson ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Background: Non-Hodgkin lymphomas (NHL) are increasing in incidence and are now the fifth most common tumor diagnosed each year in the United States. Most NHLs are of B-cell origin but the tumor tissue is variably infiltrated with T-cells. Our group has shown in diffuse B-cell large cell lymphoma, that a high number of intratumoral CD4+ T-cells predicts a better overall survival. It has been shown that recently-characterized CD4+CD25+ regulatory T-cells (Treg cells) played an important role in the mediation of anti-tumor immunity. However, there is no data on the role of intratumoral Treg cells in suppression of autologous infiltrating CD4+ T-cells in B-cell NHL. Goal: To investigate the effect of intratumoral Treg cells on the proliferation of tumor-infiltrating CD4+CD25- T-cells, to determine the underlying mechanism of the T-cell suppression, and evaluate the role that malignant B-cells may play in the recruitment of Treg cells to the site of B-cell NHL. Results: We identified a subset of CD4+CD25+ T-cells over-represented in biopsy specimens of B-cell NHL (these cells comprise 17% of cells in lymphoma biopsies, compared 7% of peripheral blood mononuclear cells, 12% of cells in inflammatory tonsil and 6% of cells in tumor free lymph nodes; p-value =0.001). These CD4+CD25+ T-cells are memory-like T-cells (CD45RO+ and CD45RA−) and express high levels of CTLA-4 and Foxp3 when compared to autologous tumor-infiltrating CD4+CD25- T-cells. Importantly, these CD4+CD25+ T-cells displayed the ability to suppress the proliferation and cytokine (IFN-g and IL-4) production of tumor-infiltrating CD4+CD25- T-cells in response to PHA stimulation. Treatment with anti-B7-H1 antibody or PD-1 fusion protein enhanced the proliferation of infiltrating CD4+CD25- T-cells when co-cultured with intratumoral CD4+CD25+ T-cells. Our results suggest that interaction between B7-H1 and PD-1 accounts for about 30% of intratumoral Treg cell-mediated inhibition of autologous infiltrating CD4+CD25- T-cells in tumor sites of B-cell NHL. Lastly, we found that CCL22 secreted by lymphoma B-cells is involved in the chemotaxis and migration of intratumoral CD4+CD25+ T-cells which express chemokine receptor CCR4, but not CCR8. Conclusion: Our results suggest that tumor microenvironmental CD4+CD25+ regulatory T-cells are important regulators of tumor immunity and that these cells are recruited to the area of lymphoma involvement by the malignant B-cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3296-3296 ◽  
Author(s):  
Han-Yun Ren ◽  
Meng Wang ◽  
Xiang-Juan Ma ◽  
Yu-Jun Dong ◽  
Zhi-Xiang Qiu ◽  
...  

Abstract Introduction This study is aimed to investigate chemokine receptors (CCR5, CCR6, CCR7, CCR9, CXCR3 and CCR2) expression on T cell subsets in healthy donors after mobilization with recombinant human granulocyte colony-stimulating factor (rhG-CSF) and analyze its correlation with acute graft-versus-host disease (aGVHD) and to understand the possible mechanisms underlying rhG-CSF-induced immune tolerance. Methods Sixty-eight healthy donor and their recipient pairs of family donor allogeneic hematopoietic stem cell transplantation (allo-HSCT) were included in this study. The expressions of chemokine receptors on CD4+ and CD8+ T cells in the peripheral blood (PB) before and after mobilization was detected using flow cytometry (FCM) respectively. Six chemokine receptors (CCR2, CCR5, CCR6, CCR7, CCR9 and CXCR3) were detected on T cell subsets in all the donors, and CCR5 and CCR7 were detected only in eighteen of all the donors. The expressions of chemokine receptor before and after mobilization was compared and its correlation with II-IV aGVHD were analyzed. Results After rhG-CSF mobilization, the expression of CCR9 on CD4+ T cells and CCR7 on CD8+ T cells were significantly upregulated compared with that before mobilization (p<0.05). However, the mean value of CCR5, CCR6 and CXCR3 expression on CD4+ and CD8+ T cell subsets in PB after mobilization didn’t differ significantly compared with that before mobilization(p>0.10). However, different individuals showed apparent inconsistencies. According to the changes of chemokine receptor expression on CD4+ and CD8+ T cell subsets, the evaluable donors and their relevant recipients were divided into the down-regulated group and the non-down-regulated (unchanged or up-regulated ) group. The incidence of grade II to IV aGVHD in the two groups were compared in their corresponding recipients. In the univariate analysis, mismatched HLA (p=0.046), down-regulation of CCR7 expression on donor CD4+ T cell subsets (p=0.010), unchangeableness or up-regulation of CCR5 expression on donor CD4+ T cell subsets (p=0.032) and CCR6 down-regulation on donor CD8+ T cells (p=0.045) were risk factors for recipients to develop II-IV aGVHD. In the multivariate analysis, down-regulation of CCR7 expression on donor CD4+ T cells after rhG-CSF was independent risk factor for II-IV aGVHD [RR=3.5, 95% CI (1.3-9.4), p=0.012], while CCR5 down-regulation on CD4+ T cells could reduce the incidence of II-IV aGVHD [RR=0.3, 95% CI (0.1-0.8), p=0.031]. Conclusions rhG-CSF mobilization could lead to differential regulation of chemokine receptors expression on T cell subsets, which might cause different effects on the migration of T cells in vivo, and decrease T cells trafficking towards GVHD target organs, and thus reduce the incidence of aGVHD after transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5426-5426
Author(s):  
Tzeon-Jye Chiou ◽  
Tan-Hwa Chu ◽  
Sin-Tak Chu ◽  
Woan-Fang Tzeng

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) has been used to treat some of hematological malignancies and inherited or acquired non-malignant disorders. Unfortunately, graft-versus-host disease (GVHD) occurred approximately 15% in transplant recipients and impacts on the outcome of allogeneic HSCT. At present, no effective modality could completely prevent the GVHD from allogeneic HSCT patients. CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmunity. However, 5% to 10% Tregs could be measured in human CD4+ T cells and few Tregs would convert to conventional activated T cells because of losing FoxP3 expression orn Tregs in suppression of T cell activation. It had been reported to correlate with the occurrence and severity of GVHD in some study. In order to study the potential use of CD4+ CD25+ FoxP3+ Tregs for the prevention of GVHD, we attempt to evaluate the better efficient method to increase the number of induced Treg cells (i Tregs) in donor and stabilize the FoxP3 ini Treg cells. Using mouse as a model, the splenocytes were prepared from mouse spleen. Before having biological function,i Treg cells need to stabilize the FoxP3 protein expression. Using retinoic acid (RA, 0.1-5ng/ml) as a stabilizer of the FoxP3 protein expression can keep thei Treg cells in stable. The endogenous regulatory T cells (n Treg) can inhibit T cell activation, thereby affecting T cells intoi Treg efficiency. We should remove the n Treg cells from the CD4+ T cells. Therefore, CD4+ T cells were isolated by negative selection, and then using the n Treg removing kit, we harvested the CD4+ CD62L+ naïve T cells fori Treg cell induction. For this purpose, naïve CD4+ cells were harvested, and then activated with anti-CD3/CD28 Dynabeads in the presence of IL-2, TGF-β1 and retinoic acid (RA) containing RPMI1640 medium. During the Tregs induction, the activated T cells were performed under low nutrient supplement (5% FBS) for three days then refreshed the cells into the full nutrient supplement (10% FBS) for another four days. The harvested cells were analyzed by flow cytometry method with fluorescence-conjugated CD-antibodies, including CD4, CD25, CD127, CD62L and FoxP3. Currently, the removal of n Treg cells could improve the efficiency of i Treg cell formation from 15% to 70-80% under this modified culture method (Fig.1). Further improvement of human peripheral blood regulatory T cell generation efficiency is our ongoing target. Our study showed that the combination of IL-2, TGF-β1 and RA in 3-day-nutrient-deprived medium could convert naïve CD4+ CD62L+ T cells to CD4+ CD25+ FoxP3+i Treg cells and stabilize FoxP3 expression in thei Treg cells efficiently. Further, we will develop thei Treg suppression assay to clarify the biological function ofi Tregs in vitro. GVHD mouse model will be established by using allogeneic HSCT to verify the function of i Tregs in vivo, too. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 923-923
Author(s):  
Takanori Yoshioka ◽  
Yusuke Meguri ◽  
Takeru Asano ◽  
Yuriko Kishi ◽  
Miki Iwamoto ◽  
...  

Abstract CD4+Foxp3+ regulatory T cells (Treg) play a central role in establishing immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). We previously reported that the long-term severe lymphopenia could result in the collapse of Treg homeostasis leading to the onset of chronic GVHD (Matsuoka et al. JCI 2010). We recently found that, not only in the chronic phase but also in the acute phase, the homeostasis of Treg is more susceptible to the post-transplant environment as compared to other lymphocyte subsets (Yoshioka et al. ASH 2014). However, the impact of acute GVHD on Treg homeostasis and the pathogenesis of following chronic GVHD has not been well studied. In this study, we examined Treg reconstitution in the early phase after transplant in patients with or without acute GVHD. For the purpose, we obtained peripheral blood samples at 2, 4, 8 and 12 weeks after transplant from 52 patients who received allogeneic HSCT, and then analyzed CD4+CD25med-highCD127lowFoxp3+ Treg comparing with CD4+CD25neg-lowCD127highFoxp3- conventional T cell (Tcon) and CD8+ T cells. CD4 T cell subsets are further divided into subpopulations by the expression of CD45RA and CD31. The expressions of Helios, Ki-67 and Bcl-2 on these subsets were also examined. After transplant, total lymphocyte counts in examined patients were significantly lower than the counts before the start of conditioning (median lymphocytes 95/ul at 2 weeks and 302/ul at 4 weeks vs 600/ul before conditioning, P<0.01 and P<0.01, respectively). As we reported before, Treg showed the active proliferation without diminishing Bcl-2 levels in the severe lymphopenia, resulted in the increased %Treg of CD4 T cells at 4 weeks after transplant (%Treg of CD4 T cells; 12.2% at 4 weeks, 4.6% in healthy controls, P<0.005). 18 patients who developed acute GVHD were studied Treg homeostasis before and after the onset of GVHD more in detail. Before the onset of acute GVHD, % Ki-67+ cells in Treg and Tcon were in the equivalent levels in these patients. After the onset of acute GVHD, % Ki-67+ cells in Treg was dramatically increased from 19.1% to 61.2% (median) and this was significantly higher than % Ki-67+ cells in Tcon after acute GVHD (P<0.05). %Treg of total CD4 T cells were significantly increased after GVHD (% Treg; Median 7.2% vs 12.2%, P<0.004). Expanded Treg after acute GVHD showed a predominant Helios+CD45RA-CD31- effector/memory phenotype with the lower level of Bcl-2 expression as compared to CD45RA+ naïve Treg. As a consequence, naïve Treg pool including CD45RA+CD31+ recent thymic emigrant Treg (RTE-Treg) were critically decreased during acute GVHD (%CD45RA+ cells; 12.7% into 6.5%, P<0.004: CD45RA+CD31+ cells; 3.6% into 2.1%, P<0.003). In contrast, Tcon still retained a relatively higher level of naïve pool (%CD45RA+ cells; 20.5%, % CD45RA+CD31+ cells; 10.9%) after acute GVHD. These data indicated that Treg proliferation was rapidly promoted in face with the inflammatory condition during acute GVHD and this appears to contribute the amelioration of developing GVHD. However, the prompt reaction resulted in the depletion of naïve Treg pool which is important to maintain stable Treg homeostasis in the long period. In conclusion, our findings suggest that acute GVHD drives aggressive Treg proliferation resulting in the increased percentage of this subset but this also induce the severe alteration of Treg homeostasis by depleting naïve Treg, which may provide the linked pathogenesis of the subsequent onset of chronic GVHD. The careful monitoring of Treg from the point of view might provide important information to promote immune tolerance. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document