scholarly journals Prenatal Diagnosis of 17p13.1p13.3 Duplication

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Kirsi Kiiski ◽  
Tiiu Roovere ◽  
Riina Zordania ◽  
Harriet von Koskull ◽  
Nina Horelli-Kuitunen

We present here the first prenatal diagnosis of 17p13.1p13.3 duplication. 17p13.3 duplication has recently been defined as a new distinctive syndrome with several diagnosed patients. In the current case prenatal chromosome analysis (G-banding) performed on cultured amniocytes revealed additional material in chromosome 19p. This was further defined as a chromosome 17p13.1p13.3 duplication by FISH and genomic microarray analysis (GMA). In addition Prenatal BACs-on-Beads (PN_BoBs) assay was performed, which detected the duplication clearly. This enables rapid prenatal diagnosis of the duplication for this family in the future.

Reproduction ◽  
2003 ◽  
pp. 279-297 ◽  
Author(s):  
MA Hulten ◽  
S Dhanjal ◽  
B Pertl

Molecular techniques have been developed for prenatal diagnosis of the most common chromosome disorders (trisomies 21, 13, 18 and sex chromosome aneuploidies) where results are available within a day or two. This involves fluorescence in situ hybridization (FISH) and microscopy analysis of fetal cells or quantitative fluorescence polymerase chain reaction (QF-PCR) on fetal DNA. Guidance is provided on the technological pitfalls in setting up and running these methods. Both methods are reliable, and the risk for misdiagnosis is low, although slightly higher for FISH. FISH is also more labour intensive than QF-PCR, the latter lending itself more easily to automation. These tests have been used as a preamble to full chromosome analysis by microscopy. However, there is a trend to apply the tests as 'stand-alone' tests for women who are at relatively low risk of having a baby with a chromosome disorder, in particular that associated with advanced age or results of maternal serum screening programmes. These women comprise the majority of those currently offered prenatal diagnosis with respect to fetal chromosome disorders and if introduced on a larger scale, the use of FISH and QF-PCR would lead to substantial economical savings. The implication, on the other hand, is that around one in 500 to one in 1000 cases with a mentally and/or physically disabling chromosome disorder would remain undiagnosed.


2014 ◽  
Vol 69 (10) ◽  
pp. 613-621 ◽  
Author(s):  
Jamie O. Lo ◽  
Brian L. Shaffer ◽  
Cori D. Feist ◽  
Aaron B. Caughey

2006 ◽  
Vol 149 (1) ◽  
pp. 98-102.e5 ◽  
Author(s):  
Lisa G. Shaffer ◽  
Catherine D. Kashork ◽  
Reza Saleki ◽  
Emily Rorem ◽  
Kyle Sundin ◽  
...  

Author(s):  
Stephen Hamlet ◽  
Eugen Petcu ◽  
Saso Ivanovski

1995 ◽  
Vol 38 (5) ◽  
pp. 812-816 ◽  
Author(s):  
Hans-Heinrich Förster ◽  
Ralph Wäsch ◽  
Tobias Kretschmar ◽  
Dietmar Mischke ◽  
Barbara Uchanska-Ziegler ◽  
...  

2014 ◽  
Vol 3 (4) ◽  
pp. 1291-1301 ◽  
Author(s):  
Eugene Pergament

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2763-2763
Author(s):  
Peter Papenhausen ◽  
James Tepperberg ◽  
Stuart Schwartz

Abstract Abstract 2763 Chronic Lymphocytic leukemia is the most common form of adult-onset leukemia in the Western world and the preferred method of analysis is to utilize fluorescence in-situ hybridization (FISH) utilizing probes to detect deletions of 11q, 13q and 17p, as well as trisomy 12 and Cyclin D1/IGH fusion. This FISH panel analysis revealed a positive clone in approximately 64% of the samples sent in for analysis. The promise of microarray analysis of CLL clones is the 100x resolution power compared to routine chromosome analysis (only partially effective in detecting clones in 3–5 day mitogen cultures) in identifying significant clonal genetic alterations or compared to the limited DNA probe targets utilized in routine FISH analysis. In order to validate microarray analysis and verify the utility for studying CLL, we have examined the DNA from112 patients, including those with either normal or abnormal results in chromosome analysis and/or FISH using the Affymetrix SNP 6.0 microarray. The studies have yielded a number of interesting and important findings including: (1) Of the 20 normal cases; 1 abnormality was detected by the array analysis; (2) Of the cases with abnormalities detected by FISH, 49 of 92 (52.3%) had an additional finding that could be delineated by array. (3) Those with 1 abnormality, seen in less than 20% of nuclei, had a 33% chance of having a second array abnormality; those with an abnormality in more than 20% of the cells had ∼50% chance of having a second array abnormality; (4) If the single abnormality was a 11q−, 17p− or +12, the individual had a higher chance of having a second abnormality (60-80%), than if the abnormality was a 13q− (∼43% chance of having a second abnormality); (5) Twelve cases had 4 or more additional abnormalities and of these 12 cases 5 had a massive number (>10), most of which involved a deletion of 17p detected by FISH, consistent with the poor prognosis associated with P53 deletions; (6) Of the 49 cases that had additional abnormalities, there were a total of 184 abnormalities not detected by FISH. There are about 18 different alterations that have been seen in multiple patients, including deletions of P16, DCC, MYLB and duplication of MYC; (7) The 13q and 11q deletions were very heterogeneous with each deletion having a different proximal and distal breakpoint. Approximately 1/3 of the 13q deletions included Rb1and all included mir15/16; (8) The 17p deletions all included P53 and 11/12 were terminal deletions; (8) The value of a genotyping array was underscored by delineation of five cases (5.4%) with segmental UPD in the abnormal group. [UPD9q, UPD11q, UPD11q, UPD13q and UPD16q]. In three of these there was also a deletion within the chromosome involved in the UPD; (9) The array could detect every abnormality detected by FISH which was present in at least 16.5% of the cells and about half of the abnormalities present in 5–16.5% of the cells; (10) Based on our rate of detection and pattern of ascertainment, we estimate that only 2.1% of CLL clones will be missed because of low level disease, whereas 32% of cases will have additional abnormalities are detected. These studies clearly show the advantages of genotyping array analysis in the study and staging of patients with CLL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document