scholarly journals Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Seigo Ito ◽  
Kaoru Takahashi

To improve the durability of dye-sensitized solar cells (DSCs), monolithic DSCs with ionic liquid electrolyte were studied. Deposited by screen printing, a carbon layer was successfully fabricated that did not crack or peel when annealing was employed beforehand. Optimized electrodes exhibited photovoltaic characteristics of 0.608 V open-circuit voltage, 6.90 cm−2 mA short-circuit current, and 0.491 fill factor, yielding 2.06% power conversion efficiency. The monolithic DSC using ionic liquid electrolyte was thermally durable and operated stably for 1000 h at 80°C.

2015 ◽  
Vol 793 ◽  
pp. 450-454 ◽  
Author(s):  
N. Gomesh ◽  
R. Syafinar ◽  
Muhamad Irwanto ◽  
Y.M. Irwan ◽  
M. Fareq ◽  
...  

Dye-sensitized solar cell (DSSC) consists of TiO2 nanoporous coating which acts as a photo electrode, a sensitizer of dye molecules soaked in the TiO2 film, liquid electrolyte and a counter electrode. This paper focuses on the usage of a sensitizer from the Pitaya fruit. Pitaya or commonly known as dragon fruit (Hylocereus polyrhizus) was extracted and used as a sensitizer to fabricate the dye sensitized solar cell (DSSC). The photoelectrochemical performance of Pitaya based solar cell shows an open circuit voltage (VOC) of 237 mV, short circuit current (ISC) of 4.98 mA, fill factor (FF) of 0.51, solar cell efficiency (η) of 0.70 % and has a peak absorbance rate of 2.7 at 550 nm. The photoelectrochemical and UV-Visible light absorbance performance of Pitaya-DSSC shows good potential in future solar cell fabrication.


MRS Advances ◽  
2020 ◽  
Vol 5 (20) ◽  
pp. 1049-1058
Author(s):  
Brian O. Owino ◽  
Francis W. Nyongesa ◽  
Alex A. Ogacho ◽  
Bernard O. Aduda ◽  
Benjamin V. Odari

ABSTRACTThis study reports on the effect of introducing TiO2 compact layer on the photovoltaic characteristics of TiO2/Nb2O5 composite dye sensitized solar cell. The compact layer was deposited by spray pyrolysis technique. It was observed that introduction of 60 nm thick compact layer improved the short circuit current density Jsc ,Open circuit voltage Voc, and efficiency of the cell from 4.9 mA/cm2 to 8.2 mA/cm2, 6.8×10-1 V to 7.2×10-1 V and 1.9 % to 3.4 % respectively compared to traditional cell prepared without compact layer. Electrochemical impedance spectroscopy confirmed an increase in recombination resistance from 5.5×101 Ω.cm2 for bare DSSC to 9.0×101 Ω.cm2 for DSSC with compact layer thereby improving electron lifetime of the cells from 2.5×10-4 s to 386.9×10-4 s.


2018 ◽  
Vol 9 ◽  
pp. 3069-3078 ◽  
Author(s):  
Mariia Karpacheva ◽  
Catherine E Housecroft ◽  
Edwin C Constable

We demonstrate that the performances of dye-sensitized solar cells (DSCs) sensitized with a previously reported N-heterocyclic carbene iron(II) dye in the presence of chenodeoxycholic acid co-adsorbant, can be considerably improved by altering the composition of the electrolyte while retaining an I−/I3 − redox shuttle. Critical factors are the solvent, presence of ionic liquid, and the use of the additives 1-methylbenzimidazole (MBI) and 4-tert-butylpyridine (TBP). For the electrolyte solvent, 3-methoxypropionitrile (MPN) is preferable to acetonitrile, leading to a higher short-circuit current density (J SC) with little change in the open-circuit voltage (V OC). For electrolytes containing MPN, an ionic liquid and MBI (0.5 M), DSC performance depended on the ionic liquid with 1-ethyl-3-methylimidazolium hexafluoridophosphate (EMIMPF) > 1,2-dimethyl-3-propylimidazolium iodide (DMPII) > 1-butyl-3-methylimidazolium iodide (BMII) ≈ 1-butyl-3-methylimidazolium hexafluoridophosphate (BMIMPF). Omitting the MBI leads to a significant improvement in J SC when the ionic liquid is DMPII, BMII or BMIMPF, but with EMIMPF the removal of the MBI additive results in a dramatic decrease in V OC (542 to 42 mV). For electrolytes containing MPN and DMPII, the effects of altering the MBI concentration have also been investigated. Although the addition of TBP improves V OC, it causes significant decreases in J SC. The best performing DSCs with the NHC-iron(II) dye employ an I−/I3 −-based electrolyte with MPN as solvent, DMPII ionic liquid (0.6 M) with no or 0.01 M MBI; values of J SC = 2.31 to 2.78 mA cm−2, V OC = 292 to 374 mV have been achieved giving η in the range of 0.47 to 0.57% which represents 7.8 to 9.3% relative to an N719 reference DSC set at 100%. Electrochemical impedance spectroscopy has been used to understand the role of the MBI additive in the electrolytes.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33855-33862 ◽  
Author(s):  
Molang Cai ◽  
Xu Pan ◽  
Weiqing Liu ◽  
John Bell ◽  
Songyuan Dai

DMImBS is used as a novel additive in dye-sensitized solar cells to restrain the electron recombination and intercalation of Li+.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2012 ◽  
Vol 476-478 ◽  
pp. 1767-1770
Author(s):  
Yu Li Lin ◽  
Cheng Yi Hsu ◽  
Chang Lun Tai

The task of this study is to prepare the TiO2 film electrode for dye-sensitized solar cells (DSSC) on ITO PET substrate using a general jet-printer. The results were compared with that obtained using ITO glass substrate. In this study, the dispersion of TiO2 slurry was manipulated by changing the pH value of the solution to avoid agglomeration of TiO2 particles. The average TiO2 particles used in this study were measured about 130nm. The experimental results show that it has the best performance when the thickness of the TiO2 film was about 10μm. In ITO glass substrate, the measured short circuit current was about 5.03mA, the open circuit voltage was measured to be 0.65V. In ITO-PET substrate, the measured short circuit current was about 2.73mA, the open circuit voltage was measured to be 0.68V.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Parth Bhatt ◽  
Kavita Pandey ◽  
Pankaj Yadav ◽  
Brijesh Tripathi ◽  
Manoj Kumar

This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs). The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V) characteristics are analyzed. Short circuit current density (JSC) decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS). An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.


2011 ◽  
Vol 64 (7) ◽  
pp. 951 ◽  
Author(s):  
Perumal Rajakumar ◽  
Kathiresan Visalakshi ◽  
Shanmugam Ganesan ◽  
Pichai Maruthamuthu ◽  
Samuel Austin Suthanthiraraj

Synthesis of polyolefinic aromatic molecules with pyrene as the surface group, and their role as an additive in the redox couple of dye-sensitized solar cells, is described. The studies yield a promising power conversion efficiency of 5.27% with a short circuit current density of 6.50 mA cm–2, an open circuit voltage of 0.60 V, and a fill factor of 0.54 under 40 mW cm–2 simulated air mass (A.M.) 1.5 illumination. Most importantly, the photocurrent responsivity increases with an increase in the number of pyrene units on the surface.


Sign in / Sign up

Export Citation Format

Share Document