scholarly journals Asymptotic Methods for Solitary Solutions and Compactons

2012 ◽  
Vol 2012 ◽  
pp. 1-130 ◽  
Author(s):  
Ji-Huan He

This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.

2008 ◽  
Vol 22 (21) ◽  
pp. 3487-3578 ◽  
Author(s):  
JI-HUAN HE

This review is an elementary introduction to the concepts of the recently developed asymptotic methods and new developments. Particular attention is paid throughout the paper to giving an intuitive grasp for Lagrange multiplier, calculus of variations, optimization, variational iteration method, parameter-expansion method, exp-function method, homotopy perturbation method, and ancient Chinese mathematics as well. Subsequently, nanomechanics in textile engineering and E-infinity theory in high energy physics, Kleiber's 3/4 law in biology, possible mechanism in spider-spinning process and fractal approach to carbon nanotube are briefly introduced. Bubble-electrospinning for mass production of nanofibers is illustrated. There are in total more than 280 references.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Suleyman Cetinkaya ◽  
Ali Demir ◽  
Hulya Kodal Sevindir

In this study, we deal with the problem of constructing semianalytical solution of mathematical problems including space-time-fractional linear and nonlinear differential equations. The method, called Shehu Variational Iteration Method (SVIM), applied in this study is a combination of Shehu transform (ST) and variational iteration method (VIM). First, ST is utilized to reduce the time-fractional differential equation with fractional derivative in Liouville-Caputo sense into an integer-order differential equation. Later, VIM is implemented to construct the solution of reduced differential equation. The convergence analysis of this method and illustrated examples confirm that the proposed method is one of best procedures to tackle space-time-fractional differential equations.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


Author(s):  
Umer Saeed

In this paper, we present a reliable method for solving system of fractional nonlinear differential equations. The proposed technique utilizes the Haar wavelets in conjunction with a quasilinearization technique. The operational matrices are derived and used to reduce each equation in a system of fractional differential equations to a system of algebraic equations. Convergence analysis and implementation process for the proposed technique are presented. Numerical examples are provided to illustrate the applicability and accuracy of the technique.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu ◽  
Imtiaz Ahmad

Variational iteration method has been extensively employed to deal with linear and nonlinear differential equations of integer and fractional order. The key property of the technique is its ability and flexibility to investigate linear and nonlinear models conveniently and accurately. The current study presents an improved algorithm to the variational iteration algorithm-II (VIA-II) for the numerical treatment of diffusion as well as convection-diffusion equations. This newly introduced modification is termed as the modified variational iteration algorithm-II (MVIA-II). The convergence of the MVIA-II is studied in the case of solving nonlinear equations. The main advantage of the MVIA-II improvement is an auxiliary parameter which makes sure a fast convergence of the standard VIA-II iteration algorithm. In order to verify the stability, accuracy, and computational speed of the method, the obtained solutions are compared numerically and graphically with the exact ones as well as with the results obtained by the previously proposed compact finite difference method and second kind Chebyshev wavelets. The comparison revealed that the modified version yields accurate results, converges rapidly, and offers better robustness in comparison with other methods used in the literature. Moreover, the basic idea depicted in this study is relied upon the possibility of the MVIA-II being utilized to handle nonlinear differential equations that arise in different fields of physical and biological sciences. A strong motivation for such applications is the fact that any discretization, transformation, or any assumptions are not required for this proposed algorithm in finding appropriate numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document