Modeling of a PV Panel and application of Maximum Power Point Tracking Command based on ANN

Author(s):  
Mourad Talbi ◽  
Nawel Mensia ◽  
Hatem Ezzaouia
Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1843 ◽  
Author(s):  
Leopoldo Gil-Antonio ◽  
Belem Saldivar ◽  
Otniel Portillo-Rodríguez ◽  
Juan Carlos Ávila-Vilchis ◽  
Pánfilo Raymundo Martínez-Rodríguez ◽  
...  

Solar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents the maximum energy that can be extracted from the PV panel. This paper presents a novel control approach for the Maximum Power Point Tracking (MPPT) based on the differential flatness property of the Boost converter, which is one of the most used converters in PV systems. The underlying idea of the proposed control approach is to use the classical flatness-based trajectory tracking control where a reference voltage will be defined in terms of the maximum power provided by the PV panel. The effectiveness of the proposed controller is assessed through numerical simulations and experimental tests. The results show that the controller based on differential flatness is capable of converging in less than 0.15 s and, compared with other MPPT techniques, such as Incremental Conductance and Perturb and Observe, it improves the response against sudden changes in load or weather conditions, reducing the ringing in the output of the system. Based on the results, it can be inferred that the new flatness-based controller represents an alternative to improve the MPPT in PV systems, especially when they are subject to sudden load or weather changes.


2013 ◽  
Vol 300-301 ◽  
pp. 371-377 ◽  
Author(s):  
David Holtzhausen ◽  
Yoon Soo Kim

This paper is concerned with optimisation of the power produced by a photovoltaic (PV) panel through designing, building and implementing maximum power point tracking (MPPT). In the literature, the MPPT has been normally approached either electronically (using a DC-to-DC converter) or mechanically (controlling the orientation of a PV panel). In this paper, these two approaches are combined to yield more power. To this end, for a given PV panel (available at the first author’s institution) which is already equipped with a mechanical tracking device, a Buck (DC-to-DC) converter is designed to improve the power saving which could be achieved by the mechanical tracking alone. Also, new electronic and mechanical MPPT methods are developed, and their combination, so-called electro-mechanical MPPT, is tested in a real environment to verify its usefulness.


2017 ◽  
Vol 40 (7) ◽  
pp. 2322-2331 ◽  
Author(s):  
Vahid Jafari Fesharaki ◽  
Farid Sheikholeslam ◽  
Mohammad Reza Jahed Motlagh

In this paper, a robust and constraint feedback linearization controller (FLC) with a modified incremental conductance (Inc.Cond) is proposed for maximum power point tracking (MPPT) in the photovoltaic (PV) systems and overall closed-loop internal stability is guaranteed. The proposed technique is independent with respect to load and is robust against disturbances in the load voltage. A boost chopper converter is utilized as an interface between the PV panel and load to control the system at the best operating point. A modified Inc.Cond method based on current orientation and without division equations is presented. The Inc.Cond method is utilized to generate the desired current for the FLC. The FLC navigates the PV panel to the maximum power point with high speed, whereas the control signal (duty cycle) constraints are monitored. Finally, the MPPT technique is validated through simulation and experimental results and two scenarios are defined to confirm controller robustness and modified Inc.Cond performance.


2021 ◽  
Vol 11 (13) ◽  
pp. 5927
Author(s):  
Cristian Napole ◽  
Mohamed Derbeli ◽  
Oscar Barambones

Photovoltaic (PV) panels are devices capable of converting solar energy to electrical without emissions generation, and can last for several years as there are no moving parts involved. The best performance can be achieved through maximum power point tracking (MPPT), which is challenging because it requires a sophisticated design, since the solar energy fluctuates throughout the day. The PV used in this research provided a low output voltage and, therefore, a boost-converter with a non-linear control law was implemented to reach a suitable end-used voltage. The main contribution of this research is a novel MPPT method based on a voltage reference estimator (VRE) combined with a fuzzy logic controller (FLC) in order to obtain the maximum power from the PV panel. This structure was implemented in a dSpace 1104 board for a commercial PV panel, PEIMAR SG340P. The scheme was compared with a conventional perturbation and observation (P&O) and with a sliding mode controller (SMC), where the outcomes demonstrated the superiority of the proposed advanced method.


Sign in / Sign up

Export Citation Format

Share Document