scholarly journals Structural Vibration Monitoring Using Cumulative Spectral Analysis

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Satoru Goto ◽  
Yoshinori Takahashi ◽  
Mikio Tohyama

This paper describes a resonance decay estimation for structural health monitoring in the presence of nonstationary vibrations. In structural health monitoring, the structure's frequency response and resonant decay characteristics are very important for understanding how the structure changes. Cumulative spectral analysis (CSA) estimates the frequency decay by using the impulse response. However, measuring the impulse response of buildings is impractical due to the need to shake the building itself. In a previous study, we reported on system damping monitoring using cumulative harmonic analysis (CHA), which is based on CSA. The current study describes scale model experiments on estimating the hidden resonance decay under non-stationary noise conditions by using CSA for structural condition monitoring.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3811 ◽  
Author(s):  
Mateja Klun ◽  
Dejan Zupan ◽  
Jože Lopatič ◽  
Andrej Kryžanowski

This paper presents the first application of the Laser Doppler Vibrometer (LDV) in non-stationary conditions within a hydropower plant powerhouse. The aim of this research is to develop a methodology to include non-contact vibration monitoring as part of structural health monitoring of concrete dams. We have performed in-situ structural vibration measurements on the run-of-the-river Brežice dam in Slovenia during the start-up tests and regular operation. In recent decades, the rapid development of laser measurement technology has provided powerful methods for a variety of measuring tasks. Despite these recent developments, the use of lasers for measuring has been limited to sites provided with stationary conditions. This paper explains the elimination of pseudo-vibration and measurement noise inherent in the non-stationary conditions of the site. Upon removal of the noise, fatigue of the different structural elements of the powerhouse could be identified if significant changes over time are observed in the eigenfrequencies. The use of laser technology is to complement the regular monitoring activities on large dams, since observation and analysis of integrity parameters provide indispensable information for decision making and maintaining good structural health of ageing dams.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1818
Author(s):  
Mattia Francesco Bado ◽  
Joan R. Casas

The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.63 mm). This review article intends to introduce, inform and advise the readers on various DOFS deployment methodologies for the assessment of the residual ability of a structure to continue serving its intended purpose. By collecting in a single place these recent efforts, advancements and findings, the authors intend to contribute to the goal of collective growth towards an efficient SHM. The current work is structured in a manner that allows for the single consultation of any specific DOFS application field, i.e., laboratory experimentation, the built environment (bridges, buildings, roads, etc.), geotechnical constructions, tunnels, pipelines and wind turbines. Beforehand, a brief section was constructed around the recent progress on the study of the strain transfer mechanisms occurring in the multi-layered sensing system inherent to any DOFS deployment (different kinds of fiber claddings, coatings and bonding adhesives). Finally, a section is also dedicated to ideas and concepts for those novel DOFS applications which may very well represent the future of SHM.


2019 ◽  
Vol 19 (4) ◽  
pp. 1188-1201 ◽  
Author(s):  
Tong Zhang ◽  
Suryakanta Biswal ◽  
Ying Wang

Deep learning algorithms are transforming a variety of research areas with accuracy levels that the traditional methods cannot compete with. Recently, increasingly more research efforts have been put into the structural health monitoring domain. In this work, we propose a new deep convolutional neural network, namely SHMnet, for a challenging structural condition identification case, that is, steel frame with bolted connection damage. We perform systematic studies on the optimisation of network architecture and the preparation of the training data. In the laboratory, repeated impact hammer tests are conducted on a steel frame with different bolted connection damage scenarios, as small as one bolt loosened. The time-domain monitoring data from a single accelerometer are used for training. We conduct parametric studies on different layer numbers, different sensor locations, the quantity of the training datasets and noise levels. The results show that the proposed SHMnet is effective and reliable with at least four independent training datasets and by avoiding vibration node points as sensor locations. Under up to 60% additive Gaussian noise, the average identification accuracy is over 98%. In comparison, the traditional methods based on the identified modal parameters inevitably fail due to the unnoticeable changes of identified natural frequencies and mode shapes. The results provide confidence in using the developed method as an effective structural condition identification framework. It has the potential to transform the structural health monitoring practice. The code and relevant information can be found at https://github.com/capepoint/SHMnet .


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Xuefeng Zhao ◽  
Kwang Ri ◽  
Ruicong Han ◽  
Yan Yu ◽  
Mingchu Li ◽  
...  

In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM) has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.


Author(s):  
Giovanni Damonte ◽  
Stefano Podestà ◽  
Giuseppe Riotto ◽  
Sergio Lagomarsino ◽  
Georges Magonette ◽  
...  

Author(s):  
Babar Nasim Khan Raja ◽  
Saeed Miramini ◽  
Colin Duffield ◽  
Shilun Chen ◽  
Lihai Zhang

The mechanical properties of bridge bearings gradually deteriorate over time resulting from daily traffic loading and harsh environmental conditions. However, structural health monitoring of in-service bridge bearings is rather challenging. This study presents a bridge bearing condition assessment framework which integrates the vibration data from a non-contact interferometric radar (i.e. IBIS-S) and a simplified analytical model. Using two existing concrete bridges in Australia as a case study, it demonstrates that the developed framework has the capability of detecting the structural condition of the bridge bearings in real-time. In addition, the results from a series of parametric studies show that the effectiveness of the developed framework is largely determined by the stiffness ratio between bridge bearing and girder ([Formula: see text], i.e. the structural condition of the bearings can only be effectively captured when the value of [Formula: see text] ranges from 1/100 and 100.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Massimo Olivero ◽  
Guido Perrone ◽  
Alberto Vallan ◽  
Daniele Tosi

A comparative study is presented between Bragg grating (FBG) and polarimetric sensors (PS), two of the most promising fiber optic sensing techniques for the structural health monitoring of smart materials based on carbon fiber composites. The paper describes the realization of a test plate equipped with both types of sensors and reports the characterization under static and dynamic conditions, highlighting pros and cons of both technologies. The FBG setup achieves 1.15 ± 0.0016 pm/kg static load response and reproduces dynamic excitation with 0.1% frequency uncertainty; the PS system exhibits a sensitivity of 1.74 ± 0.001 mV/kg and reproduces dynamic excitation with 0.5% frequency uncertainty. It is shown that the PS technology is a good and cheap alternative to FBG for vibration-monitoring of small structures at high frequency.


2014 ◽  
Vol 1036 ◽  
pp. 642-647 ◽  
Author(s):  
Rafał Burdzik ◽  
Łukasz Konieczny ◽  
Piotr Folęga

The paper presents results of the active diagnostics experiments on influence of fatigue metal damage of the inner race of bearing and unbalance of rotating masses on vibration generated by the machine. Analysis of vibration related phenomena is a solution commonly applied in Structural Health Monitoring (SHM) systems. The application of vibroacoustics methods for technical condition monitoring has been developed in the past years in many systems of manufacturing processes. Vibroacoustic methods, based on the analysis of vibration or acoustic signals perceived as residual processes of non-invasive nature, is becoming more and more important in this respect. The scope of its application as well as the applicability of methods in numerous diagnostic systems also results from the capabilities of advanced methods of signal analysis and identification of numerous characteristics of technical condition. One of the most common operation damages are caused by rolling bearings wear. The scope of research contains tests on bearing damage and the unbalance of disc. The wear processes and unbalance are closely related to the vibration levels (arising from the mass loss of plastic deformation, and the fatigue damage). The research was conducted on special research test bench for vibration monitoring for rotating machinery. Structural health monitoring of machinery has to be conducted in different states and working conditions of the manufacturing system. Thus for simulating of different operating conditions the experiments have been conducted during run up of the machine which consist the transient states of working and during work on constant rotational speed of the power generate engine. For the identification of the symptoms of the machinery and equipments health monitoring the vibration signal have been analysed in time domain and frequency transformation as well. The performed signals are not stationary. Thus it is better to observe the signal simultaneously in time and frequency domains. For this purpose the spectrograms were determined. Spectrograms computes the short-time Fourier transform of a signal by default divided into segments. During the transformation the Hamming window and noverlap were used. For the comparison of the vibration of good and damage bearings signals registered for different frequencies have been presented in form of spectrograms and RMS distributions.


Sign in / Sign up

Export Citation Format

Share Document