scholarly journals Attractors and Finite-Dimensional Behaviour in the 2D Navier-Stokes Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-29 ◽  
Author(s):  
James C. Robinson

The purpose of this review is to give a broad outline of the dynamical systems approach to the two-dimensional Navier-Stokes equations. This example has led to much of the theory of infinite-dimensional dynamical systems, which is now well developed. A second aim of this review is to highlight a selection of interesting open problems, both in the analysis of the two-dimensional Navier-Stokes equations and in the wider field of infinite-dimensional dynamical systems.

2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Delin Wu

We consider the uniform attractors for the two dimensional nonautonomous g-Navier-Stokes equations in bounded domain . Assuming , we establish the existence of the uniform attractor in and . The fractal dimension is estimated for the kernel sections of the uniform attractors obtained.


2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Hong Yin

The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes equation with artificial compressibility in two-dimensional bounded domains are shown by Minty-Browder monotonicity argument, finite-dimensional projections, and truncations. Continuity of the solutions with respect to terminal conditions is given, and the convergence of the system to an incompressible flow is also established.


1972 ◽  
Vol 55 (4) ◽  
pp. 711-717 ◽  
Author(s):  
Philip Duncan Thompson

By regarding the amplitudes of a set of orthogonal modes as the co-ordinates in an infinite-dimensional phase space, the probability distribution for an ensemble of randomly forced two-dimensional viscous flows is determined as the solution of the continuity equation for the phase flow. For a special, but infinite, class of types of random forcing, the exact equilibrium probability distribution can be found analytically from the Navier-Stokes equations. In these cases, the probability distribution is the product of exponential functions of the integral invariants of unforced inviscid flow.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


Sign in / Sign up

Export Citation Format

Share Document