scholarly journals Similar-Case-Based Optimization of Beam Arrangements in Stereotactic Body Radiotherapy for Assisting Treatment Planners

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Taiki Magome ◽  
Hidetaka Arimura ◽  
Yoshiyuki Shioyama ◽  
Katsumasa Nakamura ◽  
Hiroshi Honda ◽  
...  

Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT) to assist treatment planners.Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV) location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP).Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P<0.05) in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung.Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.

2016 ◽  
Vol 57 (6) ◽  
pp. 677-683 ◽  
Author(s):  
Yoshifumi Oku ◽  
Hidetaka Arimura ◽  
Tran Thi Thao Nguyen ◽  
Yoshiyuki Hiraki ◽  
Masahiko Toyota ◽  
...  

Abstract This study investigates whether in-room computed tomography (CT)-based adaptive treatment planning (ATP) is robust against interfractional location variations, namely, interfractional organ motions and/or applicator displacements, in 3D intracavitary brachytherapy (ICBT) for uterine cervical cancer. In ATP, the radiation treatment plans, which have been designed based on planning CT images (and/or MR images) acquired just before the treatments, are adaptively applied for each fraction, taking into account the interfractional location variations. 2D and 3D plans with ATP for 14 patients were simulated for 56 fractions at a prescribed dose of 600 cGy per fraction. The standard deviations (SDs) of location displacements (interfractional location variations) of the target and organs at risk (OARs) with 3D ATP were significantly smaller than those with 2D ATP (P &lt; 0.05). The homogeneity index (HI), conformity index (CI) and tumor control probability (TCP) in 3D ATP were significantly higher for high-risk clinical target volumes than those in 2D ATP. The SDs of the HI, CI, TCP, bladder and rectum D2cc, and the bladder and rectum normal tissue complication probability (NTCP) in 3D ATP were significantly smaller than those in 2D ATP. The results of this study suggest that the interfractional location variations give smaller impacts on the planning evaluation indices in 3D ATP than in 2D ATP. Therefore, the 3D plans with ATP are expected to be robust against interfractional location variations in each treatment fraction.


Author(s):  
Maria Varnava ◽  
Iori Sumida ◽  
Michio Oda ◽  
Keita Kurosu ◽  
Fumiaki Isohashi ◽  
...  

Abstract The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose–volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P &lt; 0.05). Furthermore, SA plans had fewer MUs and were less complex (P &lt; 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.


2016 ◽  
Vol 57 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Iori Sumida ◽  
Hajime Yamaguchi ◽  
Indra J. Das ◽  
Hisao Kizaki ◽  
Keiko Aboshi ◽  
...  

Abstract The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P &lt; 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P &lt; 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P &lt; 0.01), and for OARs, the RGI values were higher than those for the PGI (P &lt; 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value &lt;0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP.


2021 ◽  
pp. 192-202
Author(s):  
Kaveh Shirani Tak Abi ◽  
Sediqeh Habibian ◽  
Marzieh Salimi ◽  
Ahmad Shakeri ◽  
Mohammad Mehdi Mojahed ◽  
...  

Background: Nowadays, radiation therapy plays an important role in the treatment of breast cancer. The important point is the optimal control of the tumor along with the protection of organs at risk. This study aims to investigate and compare the radiobiological factors of the tumor and organs at risk in two different radiation therapy techniques of breast cancer.Methods: Ten left-sided breast cancer patients with breast-conservative surgery were selected for this study. Three-dimensional treatment planning was performed using CT scan images of the patients using PCRT 3D software. Two different tangential external beam techniques were compared: first, dual-isocentric technique (DIT) with two isocentre, one on the breast tissue, and the other one on the supraclavicular lymph nodes and second, a mono-isocentric technique (MIT) with one isocentre at the intersection of the tangential and the supraclavicular field. The total prescribed dose was 5000 cGy per 25 fractions. Dose-volume histograms (DVHs), Tumor control probability (TCP), and normal tissue complication probability (NTCP) curves were used to compare the dosimetric and radiobiological parameters of the tissues in the prementioned techniques. Results: The results showed that the maximum doses in planning target volume (PTV) with mean values of 109% and 110% in the SI and DIT were not significantly different in both techniques and that they were indeed at the optimum level based on the RTOG 1005 protocol. The dose homogeneity index in MMIT was more than that in DIT, while the conformity index and the mean TCP did not show a significant difference in the two techniques. Furthermore, minimum, mean, and maximum dose in the lung and the probability of pneumonitis decreased in MIT. On the other hand, the maximum dose, the dose of 33%, 66%, and 100% of the heart, and the probability of pericarditis in MIT were lower than the figure in DIT. Conclusion: Due to the absence of hot spots at the intersection of tangential and supraclavicular fields and the reduction of mechanical movements of the coach and collimator in MIT, the superiority of this method was confirmed.


2019 ◽  
Vol 25 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Amin Banaei ◽  
Bijan Hashemi ◽  
Mohsen Bakhshandeh ◽  
Bahram Mofid

Abstract Background: The relationship between the prostate IMRT techniques and patients anatomical parameters has been rarely investigated. Objective: to evaluate various prostate IMRT techniques based on tumor control and normal tissue complication probability (TCP and NTCP) values and also the correlation of such techniques with patients anatomical parameters. Methods: Four IMRT techniques (9, 7 and 5 fields and also automatic) were planned on the CT scans of 63 prostate cancer patients. The sum of distances between the organs at risk (OARs) and target tissue and also their average joint volumes were measured and assumed as anatomical parameters. Selected dosimetric and radiobiological parameters (TCP and NTCP) values were compared among various techniques and the correlation with the above anatomical parameters were assessed using Pearsons’ correlation. Results: High correlations were found between the dosimetric/radiobiological parameters of OARs with the joint volumes and with the distances between the OARs and target tissue in all the techniques. The TCP and complication free tumor control probability (P+) values were decreased with increasing the joint volume and decreasing the distances between the OARs and target tissue (as poly-nominal functions). The NTCP values were increased with increasing the joint volumes and decreasing the distances (3-degree poly-nominal functions). For the low percent joint volumes (<20%) and high distances (>7 cm), The TCP, NTCP and P+ showed no statistical differences between various techniques (P-value>0.07). However, 9 and 7 fields techniques indicated better radiobiological results (P-value<0.05) in almost other ranges (>20% joint volumes and <7 cm distances). Conclusion: Based on our results, it would be possible to compare radiobiological effects of various common IMRT techniques and choose the best one regarding to patients anatomical parameters derived from the CT scans.


2017 ◽  
Vol 51 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Sang Won Kang ◽  
Jin Beom Chung ◽  
Jae Sung Kim ◽  
In Ah Kim ◽  
Keun Yong Eom ◽  
...  

Abstract Background The aim of this study was to determine the optimal strategy among various arc arrangements in prostate plans of stereotactic body radiotherapy with volumetric modulated arc therapy (SBRT-VMAT). Patients and methods To investigate how arc arrangements affect dosimetric and biological metrics, SBRT-VMAT plans for eighteen patients were generated with arrangements of single-full arc (1FA), single-partial arc (1PA), double-full arc (2FA), and double-partial arc (2PA). All plans were calculated by the Acuros XB calculation algorithm. Dosimetric and radiobiological metrics for target volumes and organs at risk (OARs) were evaluated from dosevolume histograms. Results All plans were highly conformal (CI<1.05, CN=0.91) and homogeneous (HI=0.09-0.12) for target volumes. For OARs, there was no difference in the bladder dose, while there was a significant difference in the rectum and both femoral head doses. Plans using 1PA and 2PA showed a strong reduction to the mean rectum dose compared to plans using 1FA and 2FA. Contrastively, the D2% and mean dose in both femoral heads were always lower in plans using 1FA and 2FA. The average tumor control probability and normal tissue complication probability were comparable in plans using all arc arrangements. Conclusions The use of 1PA had a more effective delivery time and produced equivalent target coverage with better rectal sparing, although all plans using four arc arrangements showed generally similar for dosimetric and biological metrics. However, the D2% and mean dose in femoral heads increased slightly and remained within the tolerance. Therefore, this study suggests that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1910
Author(s):  
Kaley Woods ◽  
Robert K. Chin ◽  
Kiri A. Cook ◽  
Ke Sheng ◽  
Amar U. Kishan ◽  
...  

This study evaluates the potential for tumor dose escalation in recurrent head and neck cancer (rHNC) patients with automated non-coplanar volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) planning (HyperArc). Twenty rHNC patients are planned with conventional VMAT SBRT to 40 Gy while minimizing organ-at-risk (OAR) doses. They are then re-planned with the HyperArc technique to match these minimal OAR doses while escalating the target dose as high as possible. Then, we compare the dosimetry, tumor control probability (TCP), and normal tissue complication probability (NTCP) for the two plan types. Our results show that the HyperArc technique significantly increases the mean planning target volume (PTV) and gross tumor volume (GTV) doses by 10.8 ± 4.4 Gy (25%) and 11.5 ± 5.1 Gy (26%) on average, respectively. There are no clinically significant differences in OAR doses, with maximum dose differences of <2 Gy on average. The average TCP is 23% (± 21%) higher for HyperArc than conventional plans, with no significant differences in NTCP for the brainstem, cord, mandible, or larynx. HyperArc can achieve significant tumor dose escalation while maintaining minimal OAR doses in the head and neck—potentially enabling improved local control for rHNC SBRT patients without increased risk of treatment-related toxicities.


1998 ◽  
Vol 84 (2) ◽  
pp. 140-143 ◽  
Author(s):  
Andrzej Niemierko

Aims To present several biological concepts and models of tissue response to fractionated radiotherapy. To describe practical implementation of these models in three-dimensional treatment planning systems. Methods Models of cell survival, Equivalent Uniform Dose (EUD) and Tumor Control Probability (TCP) are discussed. These models are based on the target-cell hypothesis which assumes that response of organs and tissues to radiation therapy can be explained and mathematically described in terms of survival of the specific target-cells. Results Several formulae for deriving and calculating EUD and TCP for a given three-dimensional dose distribution are presented and discussed. Conclusions Biological models of tissue response to radiation, when used wisely, have a potential to be useful in radiation therapy treatment planning. The models can advance our understanding of the underlying biological mechanisms, and may help in designing new and better treatment strategies. They should be particularly useful in modern conformai radiotherapy where treatment strategy for each patient can be individualized and optimized according to patient characteristics and available technology of delivering sophisticated treatment plans.


Sign in / Sign up

Export Citation Format

Share Document