scholarly journals Energy- and Regularity-Dependent Stability Estimates for Near-Field Inverse Scattering in Multidimensions

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. I. Isaev

We prove new global Hölder-logarithmic stability estimates for the near-field inverse scattering problem in dimensiond≥3. Our estimates are given in uniform norm for coefficient difference and related stability efficiently increases with increasing energy and/or coefficient regularity. In addition, a global logarithmic stability estimate for this inverse problem in dimensiond=2is also given.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


1991 ◽  
Vol 118 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
M. A. Astaburuaga ◽  
Claudio Fernández ◽  
Víctor H. Cortés

SynopsisIn this paper we study the direct and inverse scattering problem on the phase space for a classical particle moving under the influence of a conservative force. We provide a formula for the scattering operator in the one-dimensional case and we settle the properties of the potential that can be deduced from it. We also study the question of recovering the shape of the barriers which can be seen from −∞ and ∞. An example is given showing that these barriers are not uniquely determined by the scattering operator.


1983 ◽  
Vol 5 (4) ◽  
pp. 376-392 ◽  
Author(s):  
Michael L. Tracy ◽  
Steven A. Johnson

In part I, we presented a method for solving the inverse scattering problem using multiple sources and detectors. Allowance for multiple angles of incident radiation improves the ill-posed nature of the inverse problem by improving the quality and quantity of information gathered at detector points. This paper describes implementation and numerical evaluation of the method. An 11 by 11 image reconstructed from noisy scattered field data is shown to closely match the original scattering object, and the improvement possible by constraining the reconstruction to be spatially band limited is demonstrated. Furthermore, for a somewhat simpler “pseudo-inverse problem,” we give findings on the effects that detector radius, degree of overdetermination, noise, and object contrast have on reconstruction quality.


2017 ◽  
Vol 25 (6) ◽  
Author(s):  
Hidayat M. Huseynov ◽  
Agil K. Khanmamedov ◽  
Rza I. Aleskerov

AbstractThis paper investigates the inverse scattering problem for a discrete Dirac system on the entire line with coefficients that stabilize to zero in one direction. We develop an algorithm for solving the inverse problem of reconstruction of coefficients. We derive a necessary and a sufficient condition on the scattering data so that the inverse problem is uniquely solvable.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050312
Author(s):  
Zhaoxing Li

This paper studies an inverse problem of reconstructing a sound-soft obstacle from a homogeneous medium. We deal with it in the framework of statistical inversion and adopt an iterative ensemble Kalman algorithm to reconstruct the boundary. Some numerical examples show that the algorithm is effective and it can recover the shape of the boundary using one or several of the incident waves.


2013 ◽  
Vol 400 (2) ◽  
pp. 525-540 ◽  
Author(s):  
Habib Ammari ◽  
Hajer Bahouri ◽  
David Dos Santos Ferreira ◽  
Isabelle Gallagher

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Andreas Tataris ◽  
Tristan van Leeuwen

We study the inverse scattering problem for a Schrödinger operator related to a static wave operator with variable velocity, using the GLM (Gelfand–Levitan–Marchenko) integral equation. We assume to have noisy scattering data, and we derive a stability estimate for the error of the solution of the GLM integral equation by showing the invertibility of the GLM operator between suitable function spaces. To regularise the problem, we formulate a variational total least squares problem, and we show that, under certain regularity assumptions, the optimisation problem admits minimisers. Finally, we compute numerically the regularised solution of the GLM equation using the total least squares method in a discrete sense.


Sign in / Sign up

Export Citation Format

Share Document