scholarly journals A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Omid Boyer ◽  
Tang Sai Hong ◽  
Ali Pedram ◽  
Rosnah Bt Mohd Yusuff ◽  
Norzima Zulkifli

Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenfeng Jiang ◽  
Dongxu Chen ◽  
Zhongzhen Yang

A Synchronous Optimization for Multiship Shuttle Tanker Fleet Design and Scheduling is solved in the context of development of floating production storage and offloading device (FPSO). In this paper, the shuttle tanker fleet scheduling problem is considered as a vehicle routing problem with hard time window constraints. A mixed integer programming model aiming at minimizing total transportation cost is proposed to model this problem. To solve this model, we propose an exact algorithm based on the column generation and perform numerical experiments. The experiment results show that the proposed model and algorithm can effectively solve the problem.


2020 ◽  
Vol 21 (2) ◽  
pp. 225-234
Author(s):  
Ananda Noor Sholichah ◽  
Y Yuniaristanto ◽  
I Wayan Suletra

Location and routing are the main critical problems investigated in a logistic. Location-Routing Problem (LRP) involves determining the location of facilities and vehicle routes to supply customer's demands. Determination of depots as distribution centers is one of the problems in LRP.  In LRP, carbon emissions need to be considered because these problems cause global warming and climate change. In this paper, a new mathematical model for LRP considering CO2 emissions minimization is proposed. This study developed a new  Mixed Integer Linear Programming (MILP)  model for LRP with time windows and considered the environmental impacts.  Finally, a case study was conducted in the province of Central Java, Indonesia. In this case study, there are three depot candidates. The study results indicated that using this method in existing conditions and constraints provides a more optimal solution than the company's actual route. A sensitivity analysis was also carried out in this case study.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Daniela S. Arango González ◽  
Elias Olivares-Benitez ◽  
Pablo A. Miranda

This paper presents a biobjective problem for a solid waste collection system in a set of islands in southern Chile. The first objective minimizes transportation cost and the second one reduces the environmental impact caused by the accumulation of solid waste at the collection points. To solve this problem, biobjective mixed integer linear programming is used. In the model, an itinerary scheme is considered for the visit to the islands. The model decides which collection points are visited per island, the collection pattern, and quantity of solid waste to be collected at each site. The quantity of solid waste is obtained dividing the solid waste generated in the island by the number of collection points selected in that same island and the frequency of visits. For this problem, we considered that the environmental impact function varies through the days during which solid waste is accumulated at each collection point. We present an instance based on real data for a set of islands in Chiloe and Palena regions in southern Chile, in which the deposit node is Dalcahue. We used the epsilon-constraint method and the weighted sum method to obtain the Pareto front, using commercial optimization software.


Author(s):  
Longlong Leng ◽  
Yanwei Zhao ◽  
Jingling Zhang ◽  
Chunmiao Zhang

In this paper, we consider a variant of the location-routing problem (LRP), namely the the multiobjective regional low-carbon LRP (MORLCLRP). The MORLCLRP seeks to minimize service duration, client waiting time, and total costs, which includes carbon emission costs and total depot, vehicle, and travelling costs with respect to fuel consumption, and considers three practical constraints: simultaneous pickup and delivery, heterogeneous fleet, and hard time windows. We formulated a multiobjective mixed integer programming formulations for the problem under study. Due to the complexity of the proposed problem, a general framework, named the multiobjective hyper-heuristic approach (MOHH), was applied for obtaining Pareto-optimal solutions. Aiming at improving the performance of the proposed approach, four selection strategies and three acceptance criteria were developed as the high-level heuristic (HLH), and three multiobjective evolutionary algorithms (MOEAs) were designed as the low-level heuristics (LLHs). The performance of the proposed approach was tested for a set of different instances and comparative analyses were also conducted against eight domain-tailored MOEAs. The results showed that the proposed algorithm produced a high-quality Pareto set for most instances. Additionally, extensive analyses were also carried out to empirically assess the effects of domain-specific parameters (i.e., fleet composition, client and depot distribution, and zones area) on key performance indicators (i.e., hypervolume, inverted generated distance, and ratio of nondominated individuals). Several management insights are provided by analyzing the Pareto solutions.


Sign in / Sign up

Export Citation Format

Share Document