scholarly journals Stability and Error Analysis of the Semidiscretized Fractional Nonlocal Thermistor Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
M. R. Sidi Ammi ◽  
A. El Hachimi

A finite difference scheme is proposed for temporal discretization of the nonlocal time-fractional thermistor problem. Stability and error analysis of the proposed scheme are provided.

2018 ◽  
Vol 23 (3) ◽  
pp. 359-378
Author(s):  
Alexander Zlotnik ◽  
Olga Kireeva

We deal with the standard three-level bilinear FEM and finite-difference scheme with a weight to solve the initial-boundary value problem for the 1D wave equation. We consider the rich collection of initial data and the free term which are the Dirac δ-functions, discontinuous, continuous but with discontinuous derivatives and from the Sobolev spaces, accomplish the practical error analysis in the L2, L1, energy and uniform norms as the mesh re_nes and compare results with known theoretical error bounds.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Sign in / Sign up

Export Citation Format

Share Document