scholarly journals Identification of Age-Related Macular Degeneration Related Genes by Applying Shortest Path Algorithm in Protein-Protein Interaction Network

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Zhang ◽  
Min Jiang ◽  
Fei Yuan ◽  
Kai-Yan Feng ◽  
Yu-Dong Cai ◽  
...  

This study attempted to find novel age-related macular degeneration (AMD) related genes based on 36 known AMD genes. The well-known shortest path algorithm, Dijkstra’s algorithm, was applied to find the shortest path connecting each pair of known AMD related genes in protein-protein interaction (PPI) network. The genes occurring in any shortest path were considered as candidate AMD related genes. As a result, 125 novel AMD genes were predicted. The further analysis based on betweenness and permutation test indicates that there are 10 genes involved in the formation or development of AMD and may be the actual AMD related genes with high probability. We hope that this contribution would promote the study of age-related macular degeneration and discovery of novel effective treatments.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Jiang ◽  
Yang Shu ◽  
Ying Shi ◽  
Li-Peng Li ◽  
Fei Yuan ◽  
...  

Gastric cancer, as one of the leading causes of cancer related deaths worldwide, causes about 800,000 deaths per year. Up to now, the mechanism underlying this disease is still not totally uncovered. Identification of related genes of this disease is an important step which can help to understand the mechanism underlying this disease, thereby designing effective treatments. In this study, some novel gastric cancer related genes were discovered based on the knowledge of known gastric cancer related ones. These genes were searched by applying the shortest path algorithm in protein-protein interaction network. The analysis results suggest that some of them are indeed involved in the biological process of gastric cancer, which indicates that they are the actual gastric cancer related genes with high probability. It is hopeful that the findings in this study may help promote the study of this disease and the methods can provide new insights to study various diseases.


2019 ◽  
Author(s):  
Jarmila Nahálková

The protein-protein interaction network of seven pleiotropic proteins (PIN7) contains proteins with multiple functions in the aging and age-related diseases (TPPII, CDK2, MYBBP1A, p53, SIRT6, SIRT7, and BSG). At the present work, the pathway enrichment, the gene function prediction and the protein node prioritization analysis were applied for the examination of main molecular mechanisms driving PIN7 and the extended network. Seven proteins of PIN7 were used as an input for the analysis by GeneMania, a Cytoscape application, which constructs the protein interaction network. The software also extends it using the interactions retrieved from databases of experimental and predicted protein-protein and genetic interactions. The analysis identified the p53 signaling pathway as the most dominant mediator of PIN7. The extended PIN7 was also analyzed by Cytohubba application, which showed that the top-ranked protein nodes belong to the group of histone acetyltransferases and histone deacetylases. These enzymes are involved in the reverse epigenetic regulation mechanisms linked to the regulation of PTK2, NFκB, and p53 signaling interaction subnetworks of the extended PIN7. The analysis emphasized the role of PTK2 signaling, which functions upstream of the p53 signaling pathway and its interaction network includes all members of the sirtuin family. Further, the analysis suggested the involvement of molecular mechanisms related to metastatic cancer (prostate cancer, small cell lung cancer), hemostasis, the regulation of the thyroid hormones and the cell cycle G1/S checkpoint. The additional data-mining analysis showed that the small protein interaction network MYBBP1A-p53-TPPII-SIRT6-CD147 controls Warburg effect and MYBBP1A-p53-TPPII-SIRT7-BSG influences mTOR signaling and autophagy. Further investigations of the detail mechanisms of these interaction networks would be beneficial for the development of novel treatments for aging and age-related diseases.


Author(s):  
Fran M. Pool ◽  
Christina Kiel ◽  
Luis Serrano ◽  
Philip J. Luthert

AbstractAge-related macular degeneration (AMD) is one of the commonest causes of sight loss in the elderly population and to date there is no intervention that slows or prevents early AMD disease progressing to blinding neovascularization or geographic atrophy. AMD is a complex disease and factors proposed to contribute to the development and progression of disease include aging, genetics, epigenetics, oxidative stress, pro-inflammatory state, and life-style factors such as smoking, alcohol, and high fat diet. Here, we generate a knowledge repository of pathways and protein–protein interaction (PPI) networks likely to be implicated in AMD pathogenesis, such as complement activation, lipid trafficking and metabolism, vitamin A cycle, oxidative stress, proteostasis, bioenergetics, autophagy/mitophagy, extracellular matrix (ECM) turnover, and choroidal vascular dropout. Two disctinct clusters ermerged from the networks for parainflamation and ECM homeostasis, which may represent two different disease modules underlying AMD pathology. Our analyses also suggest that the disease manifests primarily in RPE/choroid and less in neural retina. The use of standardized syntax when generating maps of these biological processes (SBGN standard) and networks (PSI standard) enables visualization of complex information in graphical programs such as CellDesigner and Cytoscape and enhances reusability and extension of data. The ability to focus onto subnetworks, multiple visualizations and simulation options will enable the AMD research community to computationally model subnetworks or to test experimentally new hypotheses arising from connectivities in the AMD pathway map.


2019 ◽  
Author(s):  
Jarmila Nahálková

The protein-protein interaction network of seven pleiotropic proteins (PIN7) contains proteins with multiple functions in the aging and age-related diseases (TPPII, CDK2, MYBBP1A, p53, SIRT6, SIRT7, and BSG). At the present work, the pathway enrichment, the gene function prediction and the protein node prioritization analysis were applied for the examination of main molecular mechanisms driving PIN7 and the extended network. Seven proteins of PIN7 were used as an input for the analysis by GeneMania, a Cytoscape application, which constructs the protein interaction network. The software also extends it using the interactions retrieved from databases of experimental and predicted protein-protein and genetic interactions. The analysis identified the p53 signaling pathway as the most dominant mediator of PIN7. The extended PIN7 was also analyzed by Cytohubba application, which showed that the top-ranked protein nodes belong to the group of histone acetyltransferases and histone deacetylases. These enzymes are involved in the reverse epigenetic regulation mechanisms linked to the regulation of PTK2, NFκB, and p53 signaling interaction subnetworks of the extended PIN7. The analysis emphasized the role of PTK2 signaling, which functions upstream of the p53 signaling pathway and its interaction network includes all members of the sirtuin family. Further, the analysis suggested the involvement of molecular mechanisms related to metastatic cancer (prostate cancer, small cell lung cancer), hemostasis, the regulation of the thyroid hormones and the cell cycle G1/S checkpoint. The additional data-mining analysis showed that the small protein interaction network MYBBP1A-p53-TPPII-SIRT6-CD147 controls Warburg effect and MYBBP1A-p53-TPPII-SIRT7-BSG influences mTOR signaling and autophagy. Further investigations of the detail mechanisms of these interaction networks would be beneficial for the development of novel treatments for aging and age-related diseases.


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document