scholarly journals Green Synthesis of Silver Nanoparticles UsingPinus eldaricaBark Extract

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Siavash Iravani ◽  
Behzad Zolfaghari

Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles. The objectives of this study were production of silver nanoparticles usingPinus eldaricabark extract and optimization of the biosynthesis process. The effects of quantity of extract, substrate concentration, temperature, and pH on the formation of silver nanoparticles are studied. TEM images showed that biosynthesized silver nanoparticles (approximately in the range of 10–40 nm) were predominantly spherical in shape. The preparation of nano-structured silver particles usingP. eldaricabark extract provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.

2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.


2021 ◽  
pp. 44-49
Author(s):  
Ekaterina A. Pukhovskaya ◽  
Egor V. Kalinin ◽  
Ya. M. Stanishevskiy

The development of an environmentally friendly process for the synthesis of metal nanoparticles is an important step in the field of nanotechnology. One way to achieve this goal is to use biological systems. In this study, silver nanoparticles were obtained using extracellular enzymes of organisms of the Saccharomyces boulardi strain. The effect of the pH of the medium on the synthesis of nanoparticles was studied. The antimicrobial activity of the obtained nanoparticles was investigated.


Author(s):  
A S Ningrum ◽  
A P Pridyantari ◽  
W Handayani ◽  
K Secario ◽  
D Djuhana ◽  
...  

2019 ◽  
Vol 31 (11) ◽  
pp. 2439-2442
Author(s):  
Karuppiah Muthu ◽  
B. Akilandaeaswari ◽  
S. Mangala Nagasundari

In this present study, green synthesis of silver nanoparticles (AgNPs) was synthesized from silver nitrate using the reducing agents of Polyalthia longifolia bark extract and applied the catalyst in the reduction/degradation of environmental polluted organic compound in the presence of NaBH4. Initially, the colourless reaction mixture was slowly changed to yellowish brown, UV-visible spectroscopy of surface plasmon resonance centre at 447 nm confirmed the formation of AgNPs. High resolution transmission electron microscopy (HRTEM) clearly identified the spherical shapes nanoparticles with diameters sizes 5-25 nm. This AgNPs has excellent catalyst in the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as compared to the reducing agent of NaBH4 (chemical) and plant extract (natural).


2019 ◽  
Vol 13 (2) ◽  
pp. 201-210
Author(s):  
Sorin Matei ◽  
Gabi-Mirela Matei ◽  
Gina Cogălniceanu ◽  
Alexandru Brînzan

Soil humic precursors could be considered the most active and mobile fraction and are highly significant to a series of biochemical processes in all types of soil. The microbial biosynthesized humic precursors attracted increasing attention on green synthesis of nanocomposite compounds realized between biopolymers and metal nanoparticles. Silver nanoparticles are the most used engineered nanocomposite serving as antimicrobial agents. In the present study we used aqueous solution of humic precursors synthesized by four microbial consortia (C1-C4) and selected on the basis of high quantities of exometabolites with structural similarities to soil humic acid fraction. The humic precursors were used as capping agents of silver nanoparticles in the nanocompozite synthesis. Biosynthesized humic precursors act as reductive and stabilizative agents of nanoparticles which are found between 5-300nm in size and with spherical preponderant shape. The presence of humus precursors and the biosynthesized silver nanoparticles was confirmed by FTIR and UV-Vis. At a given precursor concentration, the efficiency of nanocomposite synthesis increased with particle concentration and time of reaction, property which can be attributed to the high reduction capacity of humic precursors. The induced antimicrobial effect of exposure to nanocomposites differs due to the size, time of preparation and stability. Stabilization of nanocomposite by specific metal-ligand bonds was obtained in the solution for three months without any precipitate. The antimicrobial effect of nanocomposites was estimated under laboratory agar well diffusion tests against mycotoxigenic soil fungal isolate Aspergillus niger (A27). The green synthesis of nanocomposite material with the best antimicrobial effect against test fungus was realized by microbial consortium C3and C4.


2017 ◽  
Vol 21 (6) ◽  
pp. 673-684 ◽  
Author(s):  
Sutanuka Pattanayak ◽  
Md. Masud Rahaman Mollick ◽  
Dipanwita Maity ◽  
Sharmila Chakraborty ◽  
Sandeep Kumar Dash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document