scholarly journals Analysis of a Periodic Impulsive Predator-Prey System with Disease in the Prey

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Lianwen Wang ◽  
Zhijun Liu

We investigate a periodic predator-prey system subject to impulsive perturbations, in which a disease can be transmitted among the prey species only, in this paper. With the help of the theory of impulsive differential equations and Lyapunov functional method, sufficient conditions for the permanence, global attractivity, and partial extinction of system are established, respectively. It is shown that impulsive perturbations contribute to the above dynamics of the system. Numerical simulations are presented to substantiate the analytical results.

2008 ◽  
Vol 01 (02) ◽  
pp. 197-208 ◽  
Author(s):  
JIANJUN JIAO ◽  
LANSUN CHEN

In this work, we consider a delayed stage-structured variable coefficients predator-prey system with impulsive perturbations on predators. By using the discrete dynamical system determined by stroboscopic map and the standard comparison theorem, we obtain the sufficient conditions which guarantee the global attractivity of prey-extinction periodic solution of the investigated system. We also prove that all solutions of the system are uniformly ultimately bounded. Our results provide reliable tactic basis for the practical pest management.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Ronghua Tan ◽  
Zuxiong Li ◽  
Shengliang Guo ◽  
Zhijun Liu

This is a continuation of the work of Tan et al. (2012). In this paper a periodic single species model controlled by constant impulsive perturbation is investigated. The constant impulse is realized at fixed moments of time. With the help of the comparison theorem of impulsive differential equations and Lyapunov functions, sufficient conditions for the permanence and global attractivity are established, respectively. Also, by comparing the above results with corresponding known results of Tan et al. (2012) (i.e., the above model with linear impulsive perturbations), we find that the two different types of impulsive perturbations have influence on the above dynamics. Numerical simulations are presented to substantiate our analytical results.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750010 ◽  
Author(s):  
Hong-Li Li ◽  
Long Zhang ◽  
Zhi-Dong Teng ◽  
Yao-Lin Jiang

In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete. However, in the real world, it is often the case that diffusion occurs at certain moment every year, impulsive diffusion can provide a more suitable manner to model the actual dispersal (or migration) behaviors for many ecological species. In addition, it is generally recognized that some kinds of time delays are inevitable in population interactions. In view of these facts, a delayed predator–prey system with impulsive diffusion between two patches is proposed. By using comparison theorem of impulsive differential equation and some analysis techniques, criteria on the global attractivity of predator-extinction periodic solution are established, sufficient conditions for the permanence of system are obtained. Finally, numerical simulations are presented to illustrate our theoretical results.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zhang ◽  
Nan-jing Huang ◽  
Chuan-xian Deng

We consider a Leslie predator-prey system with mutual interference and feedback controls. For general nonautonomous case, by using differential inequality theory and constructing a suitable Lyapunov functional, we obtain some sufficient conditions which guarantee the permanence and the global attractivity of the system. For the periodic case, we obtain some sufficient conditions which guarantee the existence, uniqueness, and stability of a positive periodic solution.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Runxin Wu ◽  
Lin Li

By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which ensure the permanence and global attractivity of the discrete predator-prey system with Hassell-Varley type functional response are obtained. Example together with its numerical simulation shows that the main results are verifiable.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750002
Author(s):  
Xiaolin Fan ◽  
Zhidong Teng ◽  
Ahmadjan Muhammadhaji

The dynamical properties of a stochastic non-autonomous ratio-dependent predator–prey system are studied by applying the theory of stochastic differential equations, Itô’s formula and the method of Lyapunov functions. First, the existence, the uniqueness and the positivity of the solution are discussed. Second the boundedness of the moments and the upper bounds for growth rates of prey and predator are studied. Moreover, the global attractivity of the system under some a weaker sufficient conditions are investigated. Finally, the theoretical results are confirmed by the special examples and the numerical simulations.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Jia ◽  
Chunhua Li

We introduce and study a Gompertz model with time delay and impulsive perturbations on the prey. By using the discrete dynamical system determined by the stroboscopic map, we obtain the sufficient conditions for the existence and global attractivity of the “predator-extinction” periodic solution. With the theory on the delay functional and impulsive differential equation, we obtain the appropriate condition for the permanence of the system.


2008 ◽  
Vol 2008 ◽  
pp. 1-17 ◽  
Author(s):  
Lijuan Chen ◽  
Junyan Xu ◽  
Zhong Li

This paper discusses a delayed discrete predator-prey system with general Holling-type functional response and feedback controls. Firstly, sufficient conditions are obtained for the permanence of the system. After that, under some additional conditions, we show that the periodic solution of the system is global stable.


2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
Jinghui Yang

A ratio-dependent predator-prey system with Holling type III functional response and feedback controls is proposed. By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which ensure the permanence and global attractivity of the system are obtained. After that, under some suitable conditions, we show that the predator speciesywill be driven to extinction. Examples together with their numerical simulations show that the main results are verifiable.


Sign in / Sign up

Export Citation Format

Share Document