scholarly journals Evolution of Aerosol Particles in the Rainfall Process via Method of Moments

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fangyang Yuan ◽  
Fujun Gan

The method of moments is employed to predict the evolution of aerosol particles in the rainfall process. To describe the dynamic properties of particle size distribution, the population balance equation is converted to moment equations by the method of moments and the converted equations are solved numerically. The variations of particle number concentration, geometric mean diameter, and geometric standard deviation are given in the cases that the Brownian diffusion and inertial impaction of particles dominate, respectively. The effects of raindrop size distribution on particle size distribution are analyzed in nine cases. The results show that the particle number concentration decreases as time goes by, and particles dominated by Brownian diffusion are removed more significantly. The particle number concentration decreases much more rapidly when particle geometric mean diameter is smaller, and the particle size distribution tends to be monodisperse. For the same water content, the raindrops with small geometric mean diameters can remove particles with much higher efficiency than those with large geometric mean diameters. Particles in the “Greenfield gap” are relatively difficult to scavenge, and a new method is needed to remove it from the air.

Author(s):  
T. Okada ◽  
Y. Ishizu ◽  
K. Matsunuma

AbstractA new method for determining particle-size distribution of cigarette smoke particles was developed by simultaneous measurement of scattered light at three angles for a fixed wavelength. A theoretical chart useful for this purpose, which was made of the relative intensities of scattered light at the angles 45° and 135° to that at the angle 90°, was calculated on the basis of the Mie theory. The number concentration was determined from the Rayleigh ratio using the working standard method. The measurements were rapidly performed, without change of particle size during measuring time, with a device for dilution. The geometric mean diameter, the logarithmic standard deviation and the number concentration of mainstream smoke were found to be about 0.18 um, 0.4 and 3 X 10


2008 ◽  
Vol 8 (3) ◽  
pp. 9641-9672 ◽  
Author(s):  
M. Krudysz ◽  
K. Moore ◽  
M. Geller ◽  
C. Sioutas ◽  
J. Froines

Abstract. Ultrafine particle (UFP) number concentrations vary significantly on small spatial and temporal scales due to their short atmospheric lifetimes and multiplicity of sources. To determine UFP exposure gradients within a community, simultaneous particle number concentration measurements at a network of sites are necessary. Concurrent particle size distribution measurements aid in identifying UFP sources, while providing data to investigate local scale effects of both photochemical and physical processes on UFP. From April to December 2007, we monitored particle size distributions at 13 sites within 350 m to 11 km of each other in the vicinity of the Ports of Los Angeles and Long Beach using Scanning Mobility Particle Sizers (SMPS). Typically, three SMPS units were simultaneously deployed and rotated among sites at 1–2 week intervals. Total particle number concentration measurements were conducted continuously at all sites. Seasonal and diurnal size distribution patterns are complex, highly dependent on local meteorology, nearby PM sources, and times of day, and cannot be generalized over the study area nor inferred from one or two sampling locations. Spatial variation in particle number size distributions was assessed by calculating the coefficient of divergence (COD) and correlation coefficients (r) between site pairs. Results show an overall inverse relationship between particle size and CODs, implying that number concentrations of smaller particles (<40 nm) differ from site to site, whereas larger particles tend to have similar concentrations at various sampling locations. In addition, variations in r values as a function of particle size are not necessarily consistent with corresponding COD values, indicating that using results from correlation analysis alone may not accurately assess spatial variability.


2020 ◽  
Vol 20 (3) ◽  
pp. 1431-1449 ◽  
Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Jens Voigtländer ◽  
Khanneh Wadinga Fomba ◽  
Kay Weinhold ◽  
...  

Abstract. In the framework of the MarParCloud (Marine biological production, organic aerosol particles and marine clouds: a Process Chain) project, measurements were carried out on the islands of Cabo Verde (a.k.a. Cape Verde) to investigate the abundance, properties and sources of aerosol particles in general, and cloud condensation nuclei (CCN) in particular, both close to sea level and at the cloud level. A thorough comparison of particle number concentration (PNC), particle number size distribution (PNSD) and CCN number concentration (NCCN) at the Cape Verde Atmospheric Observatory (CVAO, sea-level station) and Monte Verde (MV, cloud-level station) reveals that during times without clouds the aerosols at CVAO and MV are similar and the boundary layer is generally well mixed. Therefore, data obtained at CVAO can be used to describe the aerosol particles at cloud level. Cloud events were observed at MV during roughly 58 % of the time, and during these events a large fraction of particles was activated to cloud droplets. A trimodal parameterization method was deployed to characterize PNC at CVAO. Based on number concentrations in different aerosol modes, four well-separable types of PNSDs were found, which were named the marine type, mixture type, dust type1 and dust type2. Aerosol particles differ depending on their origins. When the air masses came from the Atlantic Ocean, sea spray can be assumed to be one source for particles besides new particle formation. For these air masses, PNSDs featured the lowest number concentration in Aitken, accumulation and coarse modes. Particle number concentrations for sea spray aerosol (SSA, i.e., the coarse mode for these air masses) accounted for about 3.7 % of NCCN,0.30 % (CCN number concentration at 0.30 % supersaturation) and about 1.1 % to 4.4 % of Ntotal (total particle number concentration). When the air masses came from the Sahara, we observed enhanced Aitken, accumulation and coarse mode particle number concentrations and overall increased NCCN; NCCN,0.30 % during the strongest observed dust periods is about 2.5 times higher than that during marine periods. However, the particle hygroscopicity parameter κ for these two most different periods shows no significant difference and is generally similar, independent of air mass. Overall, κ averaged 0.28, suggesting the presence of organic material in particles. This is consistent with previous model work and field measurements. There is a slight increase in κ with increasing particle size, indicating the addition of soluble, likely inorganic, material during cloud processing.


2009 ◽  
Vol 9 (3) ◽  
pp. 1061-1075 ◽  
Author(s):  
M. Krudysz ◽  
K. Moore ◽  
M. Geller ◽  
C. Sioutas ◽  
J. Froines

Abstract. Ultrafine particle (UFP) number concentrations vary significantly on small spatial and temporal scales due to their short atmospheric lifetimes and multiplicity of sources. To determine UFP exposure gradients within a community, simultaneous particle number concentration measurements at a network of sites are necessary. Concurrent particle number size distribution measurements aid in identifying UFP sources, while providing data to investigate local scale effects of both photochemical and physical processes on UFP. From April to December 2007, we monitored particle number size distributions at 13 sites within 350 m–11 km of each other in the vicinity of the Ports of Los Angeles and Long Beach using Scanning Mobility Particle Sizers (SMPS). Typically, three SMPS units were simultaneously deployed and rotated among sites at 1–2 week intervals. Total particle number concentration measurements were conducted continuously at all sites. Seasonal and diurnal number size distribution patterns are complex, highly dependent on local meteorology, nearby PM sources, and times of day, and cannot be generalized over the study area nor inferred from one or two sampling locations. Spatial variation in particle number size distributions was assessed by calculating the coefficient of divergence (COD) and correlation coefficients (r) between site pairs. Results show an overall inverse relationship between particle size and CODs, implying that number concentrations of smaller particles (<40 nm) differ from site to site, whereas larger particles tend to have similar concentrations at various sampling locations. In addition, variations in r values as a function of particle size are not necessarily consistent with corresponding COD values, indicating that using results from correlation analysis alone may not accurately assess spatial variability.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sandhya Jose ◽  
Amit Kumar Mishra ◽  
Neelesh K. Lodhi ◽  
Sudhir Kumar Sharma ◽  
Sachchidanand Singh

Accurate information about aerosol particle size distribution and its variation under different meteorological conditions are essential for reducing uncertainties related to aerosol-cloud-climate interaction processes. New particle formation (NPF) and the coagulation significantly affect the aerosol size distribution. Here we study the monthly and seasonal variability of aerosol particle size distribution at Delhi from December 2011 to January 2013. Analysis of aerosol particle size distribution using WRAS-GRIMM reveals that aerosol particle number concentration is highest during the post monsoon season owing to the effect of transported crop residue and biomass burning aerosols. Diurnal variations in number concentration show a bimodal pattern with two Aitken mode peaks in all the seasons. Monthly volume size distribution also shows bi-modal distribution with distinct coarse and fine modes. NPF events are observed less frequently in Delhi. Out of 222 days of WRAS data, only 17 NPF events have been observed, with higher NPF frequency during summer season. Growth rate of the nucleation mode of NPF events vary in the range 1.88–21.66 nm/h with a mean value of ∼8.45 ± 5.73 nm/h. It is found that during NPF events the Aitken and nucleation mode particles contribute more to the number concentration. Simultaneous measurement of UV flux and particulate matter (PM10 and PM2.5) have also been done along with particle number size distribution measurement to understand the possible mechanisms for NPF events over the study location.


2019 ◽  
Author(s):  
Xianda Gong ◽  
Heike Wex ◽  
Jens Voigtländer ◽  
Khanneh Wadinga Fomba ◽  
Kay Weinhold ◽  
...  

Abstract. In the framework of the MarParCloud (Marine biological production, organic aerosol particles and marine clouds: a Process Chain) project, measurements were carried out on the islands of Cape Verde, to investigate the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) in particular, both close to sea and cloud level heights. A thorough comparison of particle number concentration (PNC), particle number size distribution (PNSD) and CCN number concentration (NCCN) at the Cape Verde Atmospheric Observatory (CVAO, sea level station) and Monte Verde (MV, cloud level station) reveals that during times without clouds the aerosol at CVAO and MV are similar and the boundary layer is generally well mixed. Therefore, data obtained at CVAO can be used to describe the aerosol particles at cloud level. Cloud events were observed at MV during roughly 58 % of the time and during these, a large fraction of particles were activated to cloud droplets. A trimodal parameterization method was deployed to characterize PNC at CVAO. Based on number concentrations in different aerosol modes, four well separable types of PNSDs were found, which were named the marine type, mixture type, dust type1 and dust type2. Aerosol particles differ depending on their origins. When the air masses came from the Atlantic Ocean, sea spray can be assumed to be one source for particles, besides for new particle formation. For these air masses, PNSDs featured the lowest number concentration in Aitken, accumulation and coarse mode. Particle number concentrations for the sea spray aerosol (SSA, i.e., the coarse mode for these air masses) accounted for about 3.7 % of NCCN,0.30 % (CCN number concentration at 0.30 % supersaturation) and about 1.1 % to 4.4 % of Ntotal (total particle number concentration). When the air masses came from the Saharan desert, we observed enhanced Aitken, accumulation and coarse mode particle number concentrations and overall increased NCCN. NCCN,0.30 % during the strongest observed dust periods is about 2.5 times higher than that during marine periods. However, the particle hygroscopicity parameter κ for these two most different periods shows no significant difference and is generally similar, independent of air mass. Overall, κ averaged 0.28, suggesting the presence of organic material in particles. This is consistent with previous model work and field measurement. There is a slight increase of κ with increasing particle size, indicating the addition of soluble, likely inorganic material during cloud processing.


2015 ◽  
Vol 15 (21) ◽  
pp. 12283-12313 ◽  
Author(s):  
A. Lupascu ◽  
R. Easter ◽  
R. Zaveri ◽  
M. Shrivastava ◽  
M. Pekour ◽  
...  

Abstract. Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10–40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20–30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.


2016 ◽  
Vol 9 (1) ◽  
pp. 103-114 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


Sign in / Sign up

Export Citation Format

Share Document