particle number concentration
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 62)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
pp. 1-34
Author(s):  
Mohit Raj Saxena ◽  
Sahil Rana ◽  
Rakesh Kumar Maurya

Abstract This study presents the influence of low-temperature heat release (LTHR) and high-temperature heat release (HTHR) on the combustion and particle number characteristics of the RCCI engine. The study investigates the relationship between the amount of LTHR, HTHR, and particle number emission characteristics. In this study, gasoline and methanol are used as low reactivity fuel (LRF), and diesel is used as a high reactivity fuel (HRF). The LRF is injected into the intake manifold using a port-fuel injection (PFI) strategy, and HRF is directly injected into the cylinder using a direct injection strategy. A particle sizer is used to measure particle emission in size ranging from 5 to 1000 nm. Firstly, the LTHR and HTHR are analyzed for different diesel injection timing (SOI) for RCCI operation. Later, the variation of particle emissions with LTHR and HTHR is characterized. Additionally, empirical correlations are developed to understand the relation between the LTHR and HTHR with particle emission. Two-staged auto-ignition of charge has been observed in RCCI combustion. Results depict that LTHR varies with diesel injection timing and the phasing of HTHR depends on the amount and location of LTHR. Results also showed that HTHR and LTHR significantly influence the formation of particle number concentration in RCCI combustion. The developed empirical correlation depicts a good correlation between diesel SOI and the ratio of HTHR to LTHR to estimate total particle number concentration.


2021 ◽  
Author(s):  
Susan Hartmann ◽  
Alice Keinert ◽  
Alexei Kiselev ◽  
Johanna Seidel ◽  
Frank Stratmann

<p>Mixed-phase clouds are essential elements in Earth’s weather and climate system. Atmospheric observation of mixed-phase clouds occasionally demonstrated a strong discrepancy between the observed ice particle and ice nucleating particle number concentration of one to four orders of magnitude at modest supercooling [1-3, 5, 7]. Different secondary ice production (SIP) mechanisms have been hypothesized which can increase the total ice particle number concentration by multiplication of primary ice particles and hence might explain the observed discrepancy [2, 4, 6].</p> <p>In this study we focus on SIP as a result of droplet-ice collisions, commonly known as Hallett-Mossop [9] or rime-splintering process. Our main objectives are (i) to quantify secondary ice particles and (ii) to learn more about the underlying physics. Therefore, we develop a new experimental set-up (Ice Droplets splintEring on FreezIng eXperiment, IDEFIX) in which quasi-monodisperse supercooled droplets collide with a fixed ice particle. IDEFIX is designed to simulate atmospheric relevant conditions such as temperature, humidity, impact velocities and collision rates. The riming process is observed with high-speed video microscopy and an infrared measuring system. Further, the produced secondary ice particles are counted via impaction on a supercooled sugar solution. Preliminary results from a first measurement campaign suggest that we observed single SIP events but did not found evidence for a productive Hallett-Mossop process so far.  We plan to continue with rime-splintering experiment in order to gain better statistics and to expand the parameter space (e.g., droplet size distribution).</p> <p>[1] Crosier, J., et al. 2011, DOI: 10.5194/acp-11-257-2011.</p> <p>[2] Field, P.R., et al. 2016, DOI: 10.1175/amsmonographs-d-16-0014.1.</p> <p>[3] Hogan, R.J., et al. 2002, DOI: 10.1256/003590002321042054.</p> <p>[4] Korolev, A. and T. Leisner 2020, DOI: 10.5194/acp-20-11767-2020.</p> <p>[5] Mossop, S.C. 1985, DOI: 10.1175/1520-0477(1985)066<0264:toacoi>2.0.co;2.</p> <p>[6] Sotiropoulou, G., et al. 2020, DOI: 10.5194/acp-20-1301-2020.</p> <p>[7] Taylor, J.W., et al. 2016, DOI: 10.5194/acp-16-799-2016.</p>


2021 ◽  
Vol 14 (12) ◽  
pp. 7627-7655
Author(s):  
Boris Vansevenant ◽  
Cédric Louis ◽  
Corinne Ferronato ◽  
Ludovic Fine ◽  
Patrick Tassel ◽  
...  

Abstract. Atmospheric particles have several impacts on health and the environment, especially in urban areas. Parts of those particles are not fresh and have undergone atmospheric chemical and physical processes. Due to a lack of representativeness of experimental conditions and experimental artifacts such as particle wall losses in chambers, there are uncertainties on the effects of physical processes (condensation, nucleation and coagulation) and their role in particle evolution from modern vehicles. This study develops a new method to correct wall losses, accounting for size dependence and experiment-to-experiment variations. It is applied to the evolution of fresh diesel exhaust particles to characterize the physical processes which they undergo. The correction method is based on the black carbon decay and a size-dependent coefficient to correct particle distributions. Six diesel passenger cars, Euro 3 to Euro 6, were driven on a chassis dynamometer with Artemis Urban cold start and Artemis Motorway cycles. Exhaust was injected in an 8 m3 chamber with Teflon walls. The physical evolution of particles was characterized during 6 to 10 h. Increase in particle mass is observed even without photochemical reactions due to the presence of intermediate-volatility organic compounds and semi-volatile organic compounds. These compounds were quantified at emission and induce a particle mass increase up to 17 % h−1, mainly for the older vehicles (Euro 3 and Euro 4). Condensation is 4 times faster when the available particle surface is multiplied by 6.5. If initial particle number concentration is below [8–9] × 104 cm−3, a nucleation mode seems to be present but not measured by a scanning mobility particle sizer (SMPS). The growth of nucleation-mode particles results in an increase in measured [PN]. Above this threshold, particle number concentration decreases due to coagulation, up to −27 % h−1. Under those conditions, the chamber and experimental setup are well suited to characterizing and quantifying the process of coagulation.


2021 ◽  
Vol 21 (22) ◽  
pp. 17185-17223
Author(s):  
Clémence Rose ◽  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Yong Lin ◽  
Isaline Bossert ◽  
...  

Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.


2021 ◽  
Vol 13 (16) ◽  
pp. 9126
Author(s):  
Alessandro Di Menno di Bucchianico ◽  
Mariacarmela Cusano ◽  
Raffaela Gaddi ◽  
Alessandra Gaeta ◽  
Gianluca Leone ◽  
...  

Exposure to ultrafine particles has been associated with short- and long-term effects on human health. The object of this paper was to assess Particle Number Concentration (PNC) and size distribution in a university environment and study the indoor/outdoor relationships. Measurements were carried out using co-located (indoor/outdoor) condensation particle counters and size spectrometers during two seasonal periods characterized by different meteorological conditions at five selected classrooms different for size, capacity, floor and use destination. PNC was dominated by particles in the ultrafine mode both indoor and outdoor. The indoor/outdoor ratios were on average between 1 and 1.2 in the summer and between 0.6 and 0.9 in the winter. Mostly the differences found among classrooms could be related to the condition of use (i.e., crowding, natural air exchange, air conditioning, seasonality). Only little differences were found among PNC measured immediately outside the classrooms. Based on information taken during the measurement campaigns, on the classrooms condition of use, it was possible to assess as a source of indoor particles in the coarse mode, the presence of students and teachers.


Author(s):  
Ki Joon Heo ◽  
Inyong Park ◽  
Gunhee Lee ◽  
Keejung Hong ◽  
Bangwoo Han ◽  
...  

The present study was performed to quantitatively evaluate the effects of air purifiers on the spread of COVID-19 and to suggest guidelines for their safe use. To simulate respiratory droplet nuclei and nano-sized virus aggregates, deionized water containing 100 nm of polystyrene latex (PSL) particles was sprayed using a vibrating mesh nebulizer, and the changes in the particle number concentration were measured for various locations of the particle source and air purifier in a standard 30 m3 test chamber. The spread of the simulated respiratory droplet nuclei by the air purifier was not significant, but the nano-sized aggregates were significantly affected by the airflow generated by the air purifier. However, due to the removal of the airborne particles by the HEPA filter contained in the air purifier, continuous operation of the air purifier reduced the number concentration of both the simulated respiratory droplet nuclei and nano-sized aggregates in comparison to the experiment without operation of the air purifier. The effect of the airflow generated by the air purifier on the spread of simulated respiratory droplet nuclei and nano-sized aggregates was negligible when the distance between the air purifier and the nebulizer exceeded 1 m.


Sign in / Sign up

Export Citation Format

Share Document